Квантовые компьютеры и нейрокомпьютеры

Автор работы: Пользователь скрыл имя, 12 Октября 2014 в 19:52, реферат

Краткое описание

Сегодняшнее время невозможно представить без компьютера. Применение компьютерных технологий сегодня затрагивает все сферы человеческой деятельности, будь то строительство, промышленность, образование, наука, экономика и т.д.
С каждым годом компьютеры становятся более мощными и производительными, притом технологии развиваются так быстро, что аналитики давшие прогнозы на будущее компьютерной индустрии 10 лет назад, в настоящее время понимают, что здорово просчитались.
Развитие компьютерной техники – это не только увлечение мощности, производительности и снижение себестоимости материалов и технологий, но и разработка и создание новых типов компьютеров, способных мыслить, подобно человеку.

Содержание

Введение
Глава I. Искусственный интеллект – его понятие сущность
теории
Понятие искусственного интеллекта
История развития систем искусственного интеллекта
Подходы к построению искусственного интеллекта
Подход к искусственному интеллекту Алана Тьюринга
Самообучение искусственного интеллекта
Искусственный интеллект – новая информационная
революция
Глава II Квантовые компьютеры и нейрокомпьютеры
Квантовый компьютер
Нейрокомпьютер
Глава III Основы нейроподобных сетей
Некоторые сведения о мозге
Нейрон как элементарное звено
Нейроподобный элемент
Нейроподобный сети
Обучение нейроподобной сети
Глава IV Может ли компьютер мыслить
Реально ли компьютерное мышление
Заключение
Список литературы

Вложенные файлы: 1 файл

Реферат Искусственный интелект.docx

— 134.81 Кб (Скачать файл)

Но для Тьюринга, самостоятельно изучавшего квантовую физику и теорию относительности еще в школе, этот вопрос был решен однозначно. Он спроецировал на машину свое собственное отношение к миру, а принципы обработки информации, заложенные в нее, несомненно являются результатом интроспекции. То есть машина Тьюринга - это, прежде всего, модель самого Тьюринга, своеобразный "памятник нерукотворный" собственному интеллекту. Иными словами - особенности мировосприятия Тьюринга наиболее точным образом представляются его машиной.

Подтверждением этому является странное ощущение, остающееся от чтения статей и записей Тьюринга. Текст очень конкретен и целеустремлен. Каждое слово выполняет свою роль однозначно. Поэтому в этой статье вы почти не найдете цитат из оригинальных работ тьюринга http://www.kings.cam.ac.uk/library/archives/modern/catalogue/turing/. Фразы настолько функциональны и на своем месте, что, будучи вырваны из контекста, либо теряют смысл, либо становятся никому не интересными общими местами и очевидными утверждениями.

Наилучшее практическое применение конструктивизм и практицизм Тьюринга, совмещенные со способностью к глубокому абстрактному мышлению, нашли в криптологии.

В 1939 году, после начала второй мировой войны, Тьюринг был приглашен для работы, а точнее - службы в Британской школе кодов и шифров, расположенной в Блечли Парк (Bletchley Park) в Оксфордшире. Тьюринг согласился легко и быстро. Дело здесь было не столько в патриотизме или наследственной готовности служить империи. Служба в Блечли гарантировала "бронь" от других, менее привлекательных, видов выполнения патриотического долга. Тьюрингу было 27, он был молод, здоров, с отличной спортивной подготовкой. Классический пример "джентльмена-спортсмена" - если не учитывать занятий математикой и нетрадиционной сексуальной ориентации. Но это не было главным. Его, в первую очередь, привлекла сама задача взлома немецких военных кодов. Интеллектуальное противоборство - своего рода игра. Шахматы и другие абстрактные игры с реальным противником всегда привлекали его, хотя в своих занятиях спортом он избегал коллективных игр, отдавая предпочтение бегу, гребле и езде на велосипеде. Задача, стоявшая перед "школой", а на самом деле - военной секретной лабораторией, входившей в ведомство Британской Intelligence Service, касалась, в первую очередь, конкретной разновидности криптограмм, создаваемых при помощи "Энигмы" - специального электромеханического устройства, применявшегося в германской авиации и, особенно, военно-морском флоте для шифровки радиограмм.

Азарт добавляло сознание того, что в этих "шахматах" роли фигур и пешек выполняли бомбардировщики Люфтваффе и немецкие подводные лодки, начинавшие позиционную войну в Атлантике, с одной стороны, и королевские ВВС и конвои союзников - с другой. Война на интеллектуальном поле шла по всем правилам, с поочередным нанесением ударов, обманными маневрами и ловушками, требующими для своего раскрытия самого бесценного - времени. Не нужно объяснять, что "читаемость" радиограмм противника во многом определяла успех боевых действий - особенно в воздухе и на море. За научным приоритетом стояли человеческие жизни.

Особенность немецкой системы шифрования при помощи "Энигмы" заключалась в том, что даже обладание образцом самой машины не обеспечивало расшифровки. Основным узлом "Энигмы" являлся набор барабанов, образующих огромное количество возможных комбинаций, что давало немецким специалистам возможность длительное время считать такой метод кодирования принципиально не поддающимся расшифровке даже при захвате самого устройства или восстановлении его из обломков на месте падения сбитых самолетов.

Тьюринг испытывал небывалый эмоциональный подъем и удовлетворение от напряженной работы ума. Совместно со своими коллегами, среди которых было много талантливых ученых, он разрабатывает "Бомбу" (the Bombe) которая позволяет уже с середины 1940 года расшифровывать все кодированные сообщения Люфтваффе. Более сложный вариант "Энигмы", применявшийся в немецком военно-морском флоте, сопротивлялся дольше. Но с весны 1941-го и все шифровки, передававшиеся немецким подводным лодкам, стали "читаемыми" в Блечли. Помогло этому то, что 9 мая 1941-го три британских эсминца атаковали и заставили сдаться немецкую U-110. При этом "Энигма" и книги кодов были захвачены абордажной командой.

Прошло около года, прежде чем немцы поняли, что причиной провала многих операций является расшифровка "принципиально не читаемых" радиограмм. С 1 февраля 1942-го на "Энигмах" устанавливается четвертый барабан, на порядки увеличивающий количество возможных комбинаций. Но 30 октября 1942 года пять британских эсминцев в Средиземном море повреждают и захватывают U-559. При попытке обнаружить "Энигму" с четырьмя роторами на быстро погружающейся поврежденной лодке погибло два английских моряка. Однако англичане успели найти новую книгу кодов, которая и дала недостающие ключи. На этот раз Тьюринг не был непосредственно занят в очередном раунде "войны мозгов". С задачей успешно справились его ученики и коллеги, но на это потребовалось еще два месяца. В общей сложности союзники не имели возможности расшифровывать немецкие коды одиннадцать месяцев.

Тьюринг являлся руководителем группы, работавшей с "Энигмой" до 1943-го, и оставался главным консультантом позднее, хотя уже с ноября 1942-го и до марта 1943-го он находится в США, консультируя американских специалистов по вопросам декодирования. Его консультации и непосредственное участие в работе американских коллег в Дейтоне (Огайо) позволили наладить американцам производство "Бомб", аналогичных созданным в Блечли. В американских источниках этот период в его деятельности почти не отражен. Это вполне естественно, так как американцы создали свой миф о том, что именно их усилиями были раскрыты шифры "Энигмы". Факты драматической игры оставались секретными до 1996-го, хотя на этот сюжет написано несколько книг, поставлены пьеса и несколько кино- и телефильмов. В американском изложении во главу угла ставился не поединок умов, а крепкие американские парни, которым удалось захватить немецкую субмарину U-571 с секретным оборудованием, что нашло свое отражение в не очень достоверной экранизации. На самом деле, U-571, потопившая советский транспорт "Мария Ульянова" и несколько судов союзников, была сама потоплена австралийским самолетом в 1944-м вместе с кодами и "Энигмой". Позднее, в 1946 году, описывая роль американцев в декодировании, Тьюринг отметил, что они первоочередное значение придавали не творческой мысли, а механизации.

Однако в Англии роль Тьюринга была оценена по достоинству. О его работе был осведомлен сам Черчилль, и в 1945 году Тьюринг был награжден Орденом Британской Империи (O.B.E.) "за жизненно важный вклад в военные усилия"

Уже, начиная с августа 1944 года, он ведет работу с первыми электронными устройствами. Еще в "Бомбах" для повышения быстродействия кроме электромеханических реле применялись ключи на электронных лампах. Более совершенная машина "Колосс" (The Colossus) работа над которой началась в Блечли в 1943-м, состояла уже из тысяч электронных ламп и по своим размерам соответствовала названию. Электронным был и один из первых "скремблеров" - "Делайла" (Delilah) - устройство для кодирования голосовых сообщений. Эта работа проводилась отделом MI6 британской Intelligence Service на базе в Хенслоп Парк (Hanslope Park) в Букингемшире. Но больше всего Тьюринга привлекало в ней то, что новая элементная база открывала реальную возможность для создания Всемирной Машины.

 

5. Самообучении искусственного интеллекта.

 

Многие вопросы, над которыми размышляли крупнейшие умы человеческой цивилизации, по прошествии времени становятся тривиальными и очевидными. Они входят в школьные программы, и непонимание их становится признаком задержки в умственном развитии. Это нормальный процесс эволюции знания. Но остаются проблемы из разряда "вечных", которые не были решены, и неизвестно, существует ли у них решение вообще. К их числу относится понимание того, что такое интеллект, определение искусственного интеллекта и все, связанные с ними практические вопросы. Научным базисом современных разработок в этой области явились работы Норберта Винера, в которых он показал, что основой информационных процессов, происходящих в живом организме, являются сложные отрицательные и положительные обратные связи, которые могут быть смоделированы в искусственном автоматическом устройстве.

Практическая важность темы стала очевидна не так уж давно, если применять временные масштабы истории развития человеческой мысли. Однако сегодня "интеллектуальные агенты" типа Copernic`а или системы распознавания образов установлены уже почти на каждом компьютере. Причиной, почему этот вопрос не нашел своего однозначного решения до сих пор, является то, что для его понимания необходимо применить иные принципы мышления, отличающиеся от тех, которые являются основными для большинства носителей не только "искусственного", но и "естественного" интеллекта. Нельзя понять нечто, находясь внутри. Необходим взгляд извне. Только такой подход может дать объяснение явлению в его взаимодействии с окружающим. Иными словами, для того чтоб понять, как мы думаем, надо думать иначе или не думать вовсе... А понять это необходимо, так как наши "железные" творения уже приблизились к уровню, когда отношение к ним, просто как к техническим приспособлениям, может оказаться недопустимым и привести к стратегическим ошибкам.

Начать анализ существующих систем искусственного интеллекта и сделать предположения об их дальнейшем развитии удобнее всего с программ распознавания графических образов и речи. Эта задача, рассмотренная изолировано, еще не дает ответа на вопрос о том, что же такое искусственный интеллект или способность к мышлению вообще, но позволяет вплотную подойти к нему. Не случайно еще классики марксизма-ленинизма связывали в своих философских работах вопрос появления "человека разумного" с развитием речи.

Если говорить именно об обработке речи, то программное обеспечение от Dragon Systems практически уже решило этот вопрос. Пятая версия Speech SDK от Microsoft, являясь, как и все произведения этой компании, гораздо более громоздким (более 500 Мб на системном диске!) и требовательным к используемым ресурсам, также позволяет обеспечить приемлемое для диктовки качество. Устойчивое распознавание слов и даже целых фраз достигается после нескольких часов тренировки и адаптации системы к особенностям произношения и создания статистической модели речи пользователя. При этом оно может достигать 95-98%. Если сравнить, то, наверное, и человек не сможет разобрать устную речь точнее.

В основе принципа действия упомянутых программных продуктов лежит математическая модель преобразования акустических сигналов в числовые последовательности, каждой из которых соответствует то или иное слово из предварительно загруженного словаря. Словари могут дополняться пользователем, а вероятность выбора из списка близких по своим числовым параметрам слов изменяется в зависимости от частоты их употребления конкретным пользователем. Распознавание графических образов, от стандартных шрифтов до разборчивого рукописного текста, известное большинству читателей по программному обеспечению от фирмы ABBYY (Fine Reader), имеет в своей основе тот же принцип.

Однако сходство между искусственными и естественными или биологическими системами носит чисто внешний характер. Необходимо сразу внести определенность в терминологию. В случае перечисленных программных продуктов мы имеем дело с распознаванием или узнаванием образов, а вот говоря о биологических системах вообще и человеке в частности, правильнее говорить об их понимании. В чем разница?

Диктуя своему скверно русифицированной программе Dragon Systems , легко можно обнаружить напечатанной фразу о том, что "Солнце ярко синело на небе". И "Дракон" может гордиться тем, что определил именно эту символьную последовательность с вероятностью 90%, так как слова "сияло" и "синело", с его точки зрения, почти не различаются. Если программа будет учитывать более полную статистику не только по словам, но и по словосочетаниям, (последние версии ряда Natural Speaking уже это делают), а процесс ее обучения составит не дни, а месяцы, что по человеческим меркам - довольно быстро, то, конечно, в следующий раз она запишет эту фразу правильно. Но принцип "узнавания" все же, останется именно узнаванием, а не пониманием.

С точки зрения "понимания", прежде всего, необходимо исключить вариант того, что повествование идет от лица собаки, которая из всего спектра цветов различает только оттенки синего, и, следовательно, для нее солнце действительно может "синеть", так как ничего иного ему не остается. Но если говорить серьезно, то для правильного понимания сказанной фразы необходимо иметь представление об описываемых образах реальности. Надо иметь опыт и помнить ощущения жары, лета, берега моря или иной ситуации, в которой данное описание могло бы иметь место. При этом слова (неважно, на каком языке, так как для понимания выбор языка не является принципиальным) являются лишь отражением этой реальности. С точки зрения нашего "Дракона" (или иной системы распознавания образов) это было бы возможным, если оснастить его температурными и световыми спектральными датчиками и отправить в отпуск, скажем, в Анталию. Иными словами, обеспечить ему весь набор органов чувств, сходных с человеческими, и позволить пройти процесс обучения с целью накопления базы данных жизненного опыта хотя бы пятилетнего ребенка. Вывод прост - адекватное человеческому понимание речи или иной вводимой информации возможно только при тождественности жизненного опыта и устройств ввода. Ведь программа распознавания может быть достаточно совершенна и адекватна, но только самой себе. Все ее "органы чувств" состоят из микрофона и клавиатуры, а жизненный опыт - это те часы тренировки и запоминания речевой модели при диктовке, которые она, собственно, и "прожила", как уникальное виртуальное "существо" во взаимодействии со своим окружающим миром, ограниченным голосом "хозяина".

Но и этого еще не достаточно для "понимания". Одной из самых важных черт систем искусственного и "естественного" интеллекта является способность к самообучению. В системах распознавания образов, помимо первичной тренировки изначально установленных словарей и таблиц символов, существует еще и процесс исправления ошибок распознавания, который также запоминается и становится частью их "жизненного опыта". Это очень похоже на дрессировку. Правда, возможности стимулирования здесь сильно ограничены. Правильно определенное слово (или символ) проходит "по умолчанию", а вот ошибка требует ручного ввода нужного значения и, возможно, его дополнительной тренировки. При этом системе, в общем-то, все равно, правильно или нет была определена данная последовательность. Отрицательные эмоции приходятся на долю пользователя-дрессировщика. С собачкой Павлова дело обстоит более жестко: за правильную последовательность действий - сахар, а за ошибку - можно и удар электротоком (или просто удар) получить. Справедливее было бы, если ручная коррекция ошибок распознавания (или, в более общем виде, исправление неправильной с точки зрения "хозяина" реакции на команду или сигнал) вызывала "отрицательные эмоции" именно у системы. Представляете - вы вносите исправление в продиктованный текст, а ваш "Дракон" жалобно попискивает от обиды и переживаний за свою некомпетентность (а может, так оно и есть?)!

Информация о работе Квантовые компьютеры и нейрокомпьютеры