Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 23:16, реферат
Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и всеобщего применения информационных средств и технологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе.
Введение
Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и всеобщего применения информационных средств и технологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе. Информатизация тесно связана с внедрением информационно-вычислительных систем, с повышением уровня автоматизации организационно-экономической, технологической, административно-хозяйственной, проектно-конструкторской, научно-исследовательской и других видов деятельности. Создание сложных технических систем, проектирование и управление сложными комплексами, анализ экологической ситуации, особенно в условиях агрессивного техногенного воздействия, исследование социальных проблем коллективов, планирование развития регионов и многие другие направления деятельности требуют организации исследований, которые имеют нетрадиционный характер. По ряду специфических признаков все перечисленные объекты прикладной деятельности обладают свойствами больших систем. Таким образом, в различных сферах деятельности приходится сталкиваться с понятиями больших или сложных систем.
В разных сферах практической деятельности развивались соответствующие методы анализа и синтеза сложных систем. Системность стала не только теоретической категорией, но и аспектом практической деятельности. Ввиду того, что сложные системы стали предметом изучения, проектирования и управления, потребовалось обобщение методов исследования систем. Появилась объективная необходимость в возникновении прикладной науки, устанавливающей связь между абстрактными теориями системности и системной практикой. В последнее время это движение оформилось в науку, которая получила название «системный анализ».
Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к необходимости использования всех современных средств научных исследований - математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.
Системный анализ является меж- и наддисциплннарным курсом, обобщающим методологию исследования сложных технических, природных и социальных систем. Для проведения анализа и синтеза сложных систем используется широкий спектр математических методов. Основу математического аппарата данной дисциплины составляют линейное и нелинейное программирование, теория принятия решений, теория игр, имитационное моделирование, теория массового обслуживания, теория статистических выводов и т.п.
Основы цели, проблемы и этапы моделирования
Основная общая цель моделирования заключается в наблюдении за системой, подверженной воздействию внешних или внутренних факторов при достижении системой определенного состоянии, которое может быть как задано, так и неизвестно, из-за отсутствия информации или по каким либо иным причинам. Моделирование позволяет определить сможет ли система функционировать при таких условиях или нет, во время этого перехода. В зависимости от реальной модели и цели расширяются и конкретизируются.
Определение качества функционирования большой системы, выбор оптимальной структуры и алгоритма поведения, построение системы в соответствие с поставленной перед ней целью - главная проблема при проектировании современных больших систем (в том числе и АСУ, САПР, АСНI).
Поэтому, моделирование - один из методов, которые используются при проектировании и исследовании больших систем. Моделирование осуществляется через эксперимент - процедуру организации и наблюдения каких-нибудь явлений, которые осуществляются в условиях, близким к действительным, или имитируют их.
Различают два типа экспериментов:
1. пассивный, когда исследователь наблюдает процесс, не вмешиваясь в него;
2. активный, когда наблюдатель вмешивается и организовывает прохождение процесса.
В основе моделирования лежат информационные процессы:
v создание модели M базируется на информации о реальном объекте;
v при реализации модели получается информация о данном объекте;
v в процессе
эксперимента с моделью
v полученные данные обрабатываются.
Как объект моделирования мы рассматриваем сложные организационно-технические системы, которые относятся к классу больших систем.
Модель М такой системы так же становится частью системы S(M) и может относиться к классу больших систем.
Следует также заметить, что модель большой системы описывается следующими критериями:
1.
ЦЕЛЬ ФУНКЦИОНИРОВАНИЯ. Определяет
степень целенаправленности
2. СЛОЖНОСТЬ. Оценивается числом элементов и связей между ними, иерархию связей, множеством входов и выходов и т.д.
3. ЦЕЛОСТНОСТЬ. Модель М, которая создается, является одной целостной системой S(M), включает в себя большое количество составных частей (экспериментов), которые находятся в сложной взаимосвязи. Характеризуется появлением новых свойств, отсутствующих у элементов (эмерджентность).
4. НЕОПРЕДЕЛЕННОСТЬ. Проявляется в системе: по состоянию системы, возможности достижения поставленной цели, методом решения задач, достоверности исходной информации и т.д. Главная характеристика неопределенности это такая мера информации как энтропия.
5.
ПОВЕДЕНЧЕСКАЯ КАЗНЬ. Позволяет
оценить эффективность
6.
АДАПТИВНОСТЬ. Это свойство
7.
ОРГАНИЗАЦИОННАЯ СТРУКТУРА
Здесь нужны:
v оптимальная
организационная структура
v информационного
v математического
и программного обеспечения
v оптимальная организация процесса моделирования (время моделирования и точность результата ).
8.
УПРАВЛЯЕМОСТЬ МОДЕЛИ. Необходимо
обеспечить управление со
9.
ВОЗМОЖНОСТЬ РАЗВИТИЯ МОДЕЛИ. Современный
уровень науки и техники
В целом проблема моделирования сложной системы - это комплекс сложных научно-технических задач.
При создании рассматривают следующие основные этапы:
v определение цели моделирования;
v идентификация реальных объектов;
v выбор вида моделей;
v построение моделей и их машинная реализация
v взаимодействие исследователя с моделью в ходе машинного эксперимента
v проверка правильности
полученных в ходе
v определение главных закономерностей, исследуемых при моделировании
Теперь же перейдем непосредственно к созданию модели по конкретно поставленному заданию.
Постановка цели моделирования
Постановка задачи, построение содержательной модели - творческий процесс, основанный на возможностях и знаниях исследователя, базируется на эвристике.
Изучив задание, можно выделить следующие цели создания модели:
1.
Определение
2.
При каком условии возможно
повышение загрузки второго
Идентификация реальных объектов
На этом этапе осуществляется определение основных элементов реальной системы, и привязка их к образным понятиям модели с дальнейшим конкретизированием и конвертированием в математическое представление на стадии расширения алгоритма программной реализации.
Для начала определим, что это вообще берется за понятие системы. Исходя из поставленной задачи, под системой подразумевается автоматизированный конвейер обработки деталей в машинном цехе, воздействие на систему с внешней среды не осуществляется, а внутреннее производится непосредственно над деталями (первичная и вторичная обработка) и станками (уровень загрузки и производительности).
Далее определим входные и выходные элементы системы, для модели это будет входная и выходная информация. За входные элементы примем детали, а точнее количество этих деталей. За выходные – производительность станков на втором уровне обработки (я не принимаю уровень загрузки сборщика брака, т.к. это можно определить по производительности).
Так же можно сразу разбить систему на две подсистемы (это в дальнейшем упростит программную реализацию): систему первичной обработки деталей и систему вторичной обработки брака. Так как известно, что бракованные детали не могут обрабатываться дважды нет необходимости в дальнейшем дроблении.
Выбор вида моделей
Виды моделей можно классифицировать следующим способом:
детерминированное стохастическое
статическое динамическое
дискретное дискретно-непрерывное непрерывное
мысленное (абстрактное) реальное (материальное)
наглядное, символическое, математическое, натурное физическое
В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на: детерминированные и стохастические; статические и динамические; дискретные, непрерывные и дискретно- непрерывные.
Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предвидится отсутствие всяких случайных влияний.
Стохастическое моделирование отображает вероятностные процессы и случаи. Анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, то есть набор однородных реализаций.
Статическое моделирование описывает поведение объекта в данный момент времени.
Динамическое моделирование отображает поведение объекта во времени.
Дискретное моделирование отображает дискретные процессы, непрерывное моделирование - непрерывные процессы, дискретно-непрерывное моделирование - оба процесса.
В зависимости от формы представления объекта (системы S) выделяют: вымышленные и реальные.
Вымышленное (абстрактное)
моделирование - когда невозможно
или дорогое материальное
v наглядное;
v символическое;
v материальное.
Наглядное моделирование - на базе представления человека об объекте создаются гипотетические модели, аналоги и макеты. Гипотетическое моделирование - выбирается гипотеза о реальном объекте, гипотеза, которая отображает уровень знаний об объекте, когда знаний не хватает для формализации. Аналоговое моделирование использует аналогии разных уровней (полная, неполная, приблизительная). Макетирование - в основе выполненного макета лежит аналогия причинно-наследственных связей.