Джеймс Клерк Максвелл

Автор работы: Пользователь скрыл имя, 28 Ноября 2012 в 09:43, реферат

Краткое описание

Максвелл заложил основы современной классической электродинамики, ввёл в физику понятия тока смещения и электромагнитного поля, исследовал электромагнитную природу света и его давление. Один из основателей кинетической теории газов, установил распределение молекул газа по скоростям. Одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики , получил ряд важных результатов в молекулярной физике и термодинамике . Пионер количественной теории цветов; автор принципа цветной фотографии. Также имеет ряд заслуг в астрономии, оптике, математике и других научных сферах. Сконструировал множество научных приборов.

Вложенные файлы: 1 файл

максвел.docx

— 72.65 Кб (Скачать файл)

 
Электромагнитная теория света.

 
В найденную Вебером формулу для  силы взаимодействия двух электрических  зарядов, перемещающихся относительно друг друга, входит коэффициент, имеющий  смысл некоторой скорости. Величину этой скорости сам Вебер и Кольрауш определили экспериментально в работе 1856 г., ставшей классической; эта величина получалась несколько больше скорости света. В следующем году Кирхгоф из теории Вебера вывел закон распространения электродинамической индукции по проводу: если сопротивление равно нулю, то скорость распространения электрической волны не зависит от сечения провода, от его природы и плотности электричества и почти равна скорости распространения света в пустоте. Вебер в одной из своих теоретико-экспериментальных работ 1864 г. подтвердил результаты Кирхгофа, показав, что постоянная Кирхгофа количественно равна числу электростатических единиц, содержащихся в электромагнитной единице, и заметил, что совпадение скорости распространения электрических волн и скорости света можно рассматривать как указание на наличие тесной связи между двумя явлениями. Однако, прежде чем говорить об этом, сначала следует точно выяснить, в чем истинный смысл понятия скорости распространения электричества: «а смысл этот,— меланхолически заключает Вебер,— представляется вовсе не таким, чтобы вызывать большие  надежды».

У Максвелла же как раз не было никаких сомнений, возможно потому, что он находил поддержку в идеях Фарадея относительно природы света.

Как и в первой работе 1864 г., Максвелл исходит из своих уравнений и  после ряда преобразований приходит к выводу, что в пустоте поперечные токи смещения распространяются с той  же скоростью, что и свет, что и  «представляет собой подтверждение электромагнитной теории света»,— уверенно заявляет Максвелл.

Затем Максвелл изучает более детально свойства электромагнитных возмущений и приходит к выводам, сегодня уже хорошо известным: колеблющийся электрический заряд создает переменное электрическое поле, неразрывно связанное с переменным магнитным полем; это представляет собой обобщение опыта Эрстеда. Уравнения Максвелла позволяют проследить изменения поля во времени в любой точке пространства. Результат такого исследования показывает, что в каждой точке пространства возникают электрические и магнитные колебания, т. е. интенсивность электрического и магнитного полей периодически изменяется; эти поля неотделимы друг от друга и поляризованы взаимно перпендикулярно. Эти колебания распространяются в пространстве с определенной скоростью и образуют поперечную   электромагнитную волну: электрические и магнитные колебания в каждой точке происходят перпендикулярно направлению распространения волны.

Вклад в молекулярную физику.

 

Другим основным научным занятием Максвелла была кинетическая теория газов, основанная на представлениях о теплоте как роде движения частичек газа (атомов или молекул). Максвелл выступил в качестве продолжателя идей Рудольфа Клаузиуса, который ввёл понятия средней длины свободного пробега и средней скорости молекул (предполагалось, что в состоянии равновесия все молекулы имеют одну и ту же скорость). Клаузиус же ввёл в кинетическую теорию элементы теории вероятностей. Максвелл решил заняться этой темой после прочтения работы немецкого учёного в выпуске журнала Philosophical Magazine за февраль 1859 года, первоначально имея целью опровергнуть взгляды Клаузиуса, но затем признал их заслуживающими внимания и развития. Уже в сентябре 1859 года Максвелл выступил на заседании Британской ассоциации в Абердине с докладом о своей работе. Результаты, содержавшиеся в докладе, были опубликованы в статье «Пояснения к динамической теории газов вышедшей в трёх частях в январе и июле 1860 года. Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве и сталкивающихся друг с другом. Шарики-молекулы можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остаётся постоянным, хотя они могут менять скорость после столкновений. Из такого рассмотрения следовало, что в равновесии частицы имеют не одинаковую скорость, а распределяются по скоростям в соответствии с кривой Гаусса (распределение Максвелла). С помощью полученной функции распределения Максвелл рассчитал ряд величин, играющих важную роль в явлениях переноса: число частиц в определённом диапазоне скоростей, среднюю скорость и средний квадрат скорости. Полная функция распределения вычислялась как произведение функций распределения для каждой из координат. Это подразумевало их независимость, что многим тогда казалось неочевидным и требовало доказательства (оно было дано позже).

Далее Максвелл уточнил численный  коэффициент в выражении для  средней длины свободного пробега, а также доказал равенство  средних кинетических энергий в  равновесной смеси двух газов. Рассмотрев проблему внутреннего трения (вязкости), Максвелл смог впервые оценить значение средней длины пробега, получив  правильный порядок величины. Другим следствием теории был казавшийся парадоксальным вывод о независимости коэффициента внутреннего трения газа от его плотности, что было впоследствии подтверждено экспериментально. Кроме того, из теории непосредственно следовало объяснение закона Авогадро. Таким образом, в работе 1860 года Максвелл фактически построил первую в истории физики статистическую модель микропроцессов, которая легла в основу развития статистической механики.

Во второй части статьи Максвелл, в добавление к внутреннему трению, рассмотрел с тех же позиций другие процессы переноса — диффузию и теплопроводность. В третьей части он обратился к вопросу о вращательном движении сталкивающихся частиц и впервые получил закон равнораспределения кинетической энергии по поступательным и вращательным степеням свободы. О результатах применения своей теории к явлениям переноса учёный доложил на очередном съезде Британской ассоциации в Оксфорде в июне 1860 года.

В 1873 году, следуя данным работ Иоганна Лошмидта, Максвелл вычислил размеры и массы молекул ряда газов, определил значение постоянной Лошмидта. В результате дискуссии о равновесии вертикального столба газа он дал простой вывод обобщённого распределения молекул в потенциальном силовом поле, ранее полученного Больцманом (распределение Максвелла — Больцмана). В 1875 году, после появления работы Яна Дидерика Ван-дер-Ваальса, он доказал, что на кривой перехода между газообразным и жидким состояниями прямая, соответствующая переходной области, отсекает равные площади (правило Максвелла).

В последние годы Максвелл уделял много внимания работам Уилларда Гиббса, развивавшего геометрические методы в приложении к термодинамике. Эти методы были взяты Максвеллом на вооружение при подготовке переизданий «Теории теплоты» и всячески пропагандировались в статьях и выступлениях. На их основе он дал правильное истолкование понятия энтропии (и даже приблизился к её трактовке как свойства, зависящего от знаний о системе) и получил четыре термодинамических соотношения (так называемые соотношения Максвелла). Он изготовил несколько моделей термодинамических поверхностей, одну из которых послал Гиббсу.

В 1879 году вышли две последние  работы Максвелла по молекулярной физике. В первой из них были даны основы теории неоднородных разрежённых газов. Он также рассмотрел взаимодействие газа с поверхностью твёрдого тела в связи с тепловым действием  света в радиометре, изобретённом Уильямом Круксом (первоначально предполагалось, что этот прибор фиксирует давление света). Во второй статье, «О теореме Больцмана о среднем распределении энергии в системе материальных точек, Максвелл ввёл использующиеся поныне термины «фаза системы» (для совокупности координат и импульсов) и «степень свободы молекулы», фактически высказал эргодическую гипотезу для механических систем с постоянной энергией, рассмотрел распределение газа под действием центробежных сил, то есть заложил основы теории центрифугирования. Эта работа стала важным этапом на пути создания статистической механики, развитой впоследствии в работах Гиббса.

 

 

Демон Максвелла.

 

Многие физические процессы относятся  к категории обратимых. Воду, например, можно заморозить, а полученный лед снова растопить, и мы получим воду в прежнем объеме и состоянии; железо можно намагнитить, а затем размагнитить и т. п. При этом энтропия (степень упорядоченности) системы в начальной и конечной точке процесса остается неизменной. Есть и необратимые в термодинамическом понимании процессы — горение, химические реакции и т. п. То есть, согласно второму началу термодинамики, любой процесс в итоге приводит либо к сохранению, либо к снижению степени упорядоченности системы. Такая дисгармоничная ситуация сильно озадачила физиков второй половины XIX столетия, и тогда Максвелл предложил парадоксальное решение, позволяющее, казалось бы, обойти второе начало термодинамики и обратить неуклонный рост хаоса в замкнутой системе. Он предложил следующий «мысленный эксперимент»: представим себе герметичный контейнер, разделенный надвое газонепроницаемой перегородкой, в которой имеется единственная дверца размером с атом газа. В начале опыта в верхней части контейнера содержится газ, а в нижней — полный вакуум.

Теперь представим, что к дверце приставлен некий микроскопический вахтер, зорко следящий за молекулами. Быстрым молекулам он дверцу открывает  и пропускает их за перегородку, в  нижнюю половину контейнера, а медленные  оставляет в верхней половине. Понятно, что если такой мини-вахтер будет дежурить у дверцы достаточно долго, газ разделится на две половины: в верхней части останется холодный газ, состоящий из медленных молекул, а в нижней скопится горячий газ из быстрых молекул. Тем самым система упорядочится по сравнению с исходным состоянием, и второе начало термодинамики будет нарушено. Мало того, разницу температур можно будет использовать для получения работы (принцип Карно). Если такого вахтера оставить на дежурстве навечно (или организовать сменное дежурство), мы получим вечный двигатель.

Этот забавный вахтер, которому остроумные коллеги ученого дали прозвище «демон Максвелла», до сих пор живет в  научном фольклоре и волнует  умы ученых. Действительно, вечный двигатель человечеству бы не повредил, но вот беда: судя по всему, чтобы демон Максвелла заработал, ему самому потребуется энергопитание в виде притока фотонов, необходимых для освещения приближающихся молекул и их просеивания. Кроме того, просеивая молекулы, демон и дверца не могут не вступать с ними во взаимодействие, в результате чего они сами будут неуклонно получать от них тепловую энергию и наращивать свою энтропию, в результате чего суммарная энтропия системы всё равно уменьшаться не будет. То есть таким объяснением теоретическая угроза второму началу термодинамики была отведена, но не безоговорочно.

Первый по-настоящему убедительный контраргумент был сформулирован  вскоре после зарождения квантовой механики. Для сортировки подлетающих молекул демону нужно измерять их скорость, а сделать это с достаточной точностью он не может в силу принципа неопределенности Гейзенберга. Кроме того, в силу этого же принципа он не может точно определить и местонахождение молекулы в пространстве, и часть молекул, перед которыми он распахивает микроскопическую дверцу, с этой дверцей разминутся. Иными словами, демон Максвелла на поверку оказывается макроскопическим слоном в посудной лавке микромира, который живет по собственным законам. Приведите демона в соответствие с законами квантовой механики, и он окажется не в состоянии сортировать молекулы газа и просто перестанет представлять какую-либо угрозу второму началу термодинамики.

Другой веский аргумент против возможности  существования демона-вахтера появился уже в компьютерную эру. Предположим, что демон Максвелла — это компьютерная автоматизированная система управления открыванием дверцы. Система производит побитовую обработку входящей информации о скорости и координатах приближающихся молекул. Пропустив или отклонив молекулу, система должна произвести сброс прежней упорядоченной информации — а это равносильно повышению энтропии на величину, равную снижению энтропии в результате упорядочивания газа при пропускании или отклонении молекулы, информация о которой стерта из оперативной памяти компьютерного демона. Сам компьютер, к тому же, также греется, так что и в такой модели в замкнутой системе, состоящей из газовой камеры и автоматизированной пропускной системы, энтропия не убывает, и второй закон термодинамики.

 

Устойчивость колец Сатурна.

 

Значительное внимание Максвелла  в свое время привлекало исследование природы колец Сатурна, предложенное в 1855 году Кембриджским университетом на соискание премии Адамса (работу требовалось завершить за два года). Кольца были открыты Галилео Галилеем в начале XVII века и долгое время оставались загадкой природы: планета казалась окружённой тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы (третье кольцо было открыто незадолго до этого Джорджем Бондом). Уильям Гершель считал их сплошными твёрдыми объектами. Пьер Симон Лаплас доказывал, что твёрдые кольца должны быть неоднородными, очень узкими и обязательно должны вращаться. Проведя математический анализ различных вариантов строения колец, Максвелл убедился, что они не могут быть ни твёрдыми, ни жидкими (в последнем случае кольцо быстро разрушилось бы, распавшись на капли). Он пришёл к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. При помощи Фурье-анализа Максвелл изучил распространение волн в таком кольце и показал, что при определённых условиях метеориты не сталкиваются между собой. Для случая двух колец он определил, при каких соотношениях их радиусов наступает состояние неустойчивости. За эту работу ещё в 1857 году Максвелл получил премию Адамса, однако продолжал трудиться над этой темой, итогом чего стала издание в 1859 году трактата «Об устойчивости движения колец Сатурна». Эта работа сразу получила признание в научных кругах. Королевский астроном Джордж Эйри объявил её самым блестящим применением математики к физике, которое он когда-либо видел. Позже, под влиянием методов кинетической теории газов, Максвелл попытался развить кинетическую теорию колец, однако не преуспел в этом начинании. Эта задача оказалась гораздо сложнее, чем в случае газов, из-за неупругости столкновений метеоритов и существенной анизотропии распределения их скоростей. В 1895 году Джеймс Килер и Аристарх Белопольский измерили доплеровский сдвиг разных частей колец Сатурна и обнаружили, что внутренние части движутся быстрее, чем внешние. Это стало подтверждением вывода Максвелла о том, что кольца состоят из множества малых тел, подчиняющихся законам Кеплера. Работа Максвелла по устойчивости колец Сатурна считается «первой работой по теории коллективных процессов, выполненной на современном уровне».

Информация о работе Джеймс Клерк Максвелл