Контрольная работа по "Концепция современного естествознания"

Автор работы: Пользователь скрыл имя, 10 Декабря 2011 в 20:01, контрольная работа

Краткое описание

Природа есть сложная система, сложный организм, где все связано со всем. По выражению современного философа К. Ясперса, «существуют отдельные науки, а не наука вообще как наука о действительном, однако каждая из них входит в мир беспредельный, но все-таки единый в калейдоскопе связей». Аналитический метод и выделение какой-то стороны предмета или явления — наиболее критикуемые стороны научного метода познания. Наука с самого начала стала отвлекаться от вопросов «почему?» и вопросов общего характера, занявшись исследованием «как все происходит?». Путь аналитического естествознания, заданный Ньютоном, превратил общие соображения в четко поставленную математическую задачу, и ученый, не вдаваясь в выяснение физической природы тяготения, решил ее разработанным им же математическим методом.

Содержание

1.1. Методы естествознания.
1.2. Методы оценок размеров и расстояний.
1.3. Свет - электромагнитная волна.
2.1. Связь законов сохранения со свойствами пространства и времени.
2.2. Волновое описание процессов.
2.3. Суть спора о «тепловой смерти Вселенной».
3.1. Развитие представлений о составе веществ.
3.2. Уровни организации живой природы на Земле.
3.3. Основные положения клеточной теории, методы изучения состава клетки.
4.1. Характеристики и эволюция звезд.
4.2. Рождение частиц по современной модели развития Вселенной.
5.1. Биосферный уровень организации жизни.
5.2. Понятие бифуркации.
Список литературы

Вложенные файлы: 1 файл

Контрольная работа. Естествознание.doc

— 771.00 Кб (Скачать файл)

      

  Размеры планет определяют тщательным наблюдением  за их движениями. Так, Меркурий — ближайшая  к Солнцу планета — всегда находится  близко к нему, при наблюдении с  Земли его отклонение (наибольшая элонгация) может быть до 23°, тогда  как для Венеры (второй от Солнца планеты) — 43 — 48°. Радиус орбиты Меркурия порядка 0,38а радиуса земной орбиты, где а = 1 а. е., а Венеры — 0,7 а. е.

  Размеры Земли оценил удивительно точно  Эратосфен еще во II в. до н. э., измерив угловое отклонение Солнца от зенита в Александрии в 7°30', тогда как в Сиене (современный Асуан) оно было в зените. При этом 7°30' составили такую долю от 360°, какую составляет расстояние 800 км между городами от полной длины окружности Земли. Так он получил эту длину — 40 000 км, сейчас 40075,696 км (рис. 2.1). Поскольку она равна R, определил радиус Земли в 6400 км (в геодезии этот метод называется методом периангуляции).

  Имея  пропорции, можно построить и  примерную схему Солнечной системы. Для получения абсолютных значений расстояний в ней нужно знать радиус орбиты хотя бы одной планеты. Его можно определить с помощью радара. Сейчас все расстояния определены достаточно точно и разными методами. При радиолокационном методе на исследуемый объект посылают мощный кратковременный электромагнитный импульс, а затем принимают отраженный сигнал. Скорость распространения электромагнитных волн в вакууме с = 299 792 458 м/с. Если точно измерить время, которое потребовалось сигналу, чтобы дойти до объекта и обратно, то легко вычислить искомое расстояние. Радиолокационные наблюдения позволяют с большой точностью определить расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.

  Параллакс — угловое смещение предмета, которым можно характеризовать расстояние до него. Из практического опыта известно, что скорость изменения направления на предмет при движении наблюдателя тем меньше, чем дальше объект находится от наблюдателя. Метод геометрического параллакса (триангуляции) позволяет измерять расстояние в макромире, используя теоремы евклидовой геометрии (рис. 2.2, а). Явление геометрического параллакса — основа стереоскопического зрения человека и животных. Методом параллакса определяют расстояние до ближайших планет (рис. 2.2, б). Можно обнаружить смещение и при перемещении наблюдателя из-за суточного движения Земли, будто он переместился из центра Земли в точку экватора, из которой планета кажется находящейся на горизонте. Угол, под которым со светила виден экваториальный радиус Земли, перпендикулярный лучу зрения, называют суточным параллаксом. Средний суточный параллакс Солнца равен 8,794", Луны — 57,04'.

  Метод геометрического параллакса также  пригоден для определения расстояний до ближайших звезд, если в качестве базиса использовать не радиус Земли, а диаметр земной орбиты. Он позволяет оценить расстояние до 100 св. лет (рис. 2.2, в). Годичный параллакс звезды — это угол (к), на который изменится направление на звезду, если наблюдатель переместится из центра Солнечной системы на земную орбиту в направлении, перпендикулярном направлению на звезду. Иначе говоря, это угол, под которым со звезды видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения (рис. 2.2, г). С годичным параллаксом связана и основная единица измерения расстояний между звездами — парсек (от параллакс и секунда): 1 пк = = 206 265 а. е. = 3,263 св. года = 3,086 • 1016 м. Так, ближайшая к нам звезда Проксима Центавра при я = 0,762" находится на расстоянии 1,31 пк, Альфа того же созвездия Центавра при я = 0,751'' — на расстоянии 1,33 пк, а известная звезда Сириус (Альфа Большого Пса) — 0,375" и 2,66 пк, соответственно.

  Хотя  диаметр земной орбиты и равен 3-1011 м, из-за огромного расстояния до звезд измерять углы достаточно сложно. Небо фотографируют одним телескопом через полгода. При наложении фотографий изображения большинства звезд совпадут друг с другом, но для ближайших звезд окажутся смещенными. Отношение этого малого смещения к фокусному расстоянию телескопа даст тот же угол, что и отношение базиса к расстоянию до звезды. Смещение изображения для ближайшей звезды равно примерно 1" для фокусного расстояния 10 м и составит на фотопластинке 50 • 10-6 м, или 50 мкм, что можно измерить только под микроскопом. Ближайшая к Солнцу звезда в созвездии Центавра находится на расстоянии 4,3 св. года, в 272 000 раз дальше, чем Земля от Солнца.

  

  

 
   
 
 
 
  

  

 
 
 
  

  

     
     
     
      Рис. 2.2. Метод триангуляции:

  а — определение расстояний до корабля (по предложению Фалеса); б — определение расстояния до Марса (в единицах радиуса Земли); в — определение расстояний до близких звезд (годичный параллакс); г — определение расстояний до далеких звезд (годичный параллакс). (1 а. е. = = 1,5 1011 м)

 

  

  Когда не было приборов для точного определения  углов, использовали такой метод. Если из двух одинаково ярких тел одно находится на расстоянии в я раз  большем, чем другое, то близкое тело кажется в п2 раз ярче. Например, Солнце в 106 раз в квадрате ярче Сириуса, следовательно, Сириус в миллион раз дальше от Земли, чем Солнце. Яркость других звезд можно сравнить по тому же правилу с яркостью Сириуса и т.д. Сириус отстоит от нас на расстоянии примерно 10 св. лет.

  Из  распределения звезд по небу следует, что они образуют круговой диск в 105 св. лет, так как яркость самых слабых звезд примерно в 108 раз меньше яркости Сириуса. Толщина этого диска около 104 св. лет. Среднее расстояние между звездами в Галактике примерно 10 св. лет, отсюда среднее число звезд — 50 млрд. Когда мы смотрим в направлении центра Галактики, видим огромное скопление звезд — Млечный Путь. Солнце находится на расстоянии примерно в 2/3 от центра до края Галактики в одном из ее рукавов. От слабых звезд Млечного Пути свет идет до Земли десятки тысяч лет — так далеки они от нас. Большинство звезд Млечного Пути не видно невооруженным глазом, хотя многие из них являются белыми и голубовато-белыми гигантскими звездами, излучающими энергии в десятки тысяч раз больше, чем Солнце — типичный желтый карлик с температурой поверхности 6000 К. Для земного наблюдателя спиральные ветви экваториального пояса Галактики проецируются в виде светлой полосы Млечного Пути, составляющего основу Галактики (от греч. galaktikos — млечный, молочный).

  Другие  галактики видны в телескопы как небольшие туманные пятна, их и назвали туманностями. Как определить расстояния до них? Полная яркость туманности Андромеды примерно такая же, как и у звезды, расположенной на расстоянии 10 св. лет. С помощью мощных телескопов выяснено, что в других галактиках приблизительно столько же звезд, сколько в Млечном Пути. Значит, эта туманность в 50 млрд раз ярче отдельной звезды Галактики, и расстояние до нее должно быть в раз больше, чем до отдельных звезд, т.е. произведения этого числа на 10 св. лет, или около 2 млн св. лет. Эта грубая оценка примерно соответствует тому, что дают другие методы. Расстояние от Галактики до туманности Андромеды в 20 раз больше диаметра Галактики, т. е. свет, идущий от нее и который мы видим сейчас, покинул эту Галактику, когда на Земле еще не было людей, но жизнь уже зародилась.

  Расстояния  до ближайших галактик определяют методом  измерения сравнительной яркости  исходя из закона убывания интенсивности  точечного источника пропорционально  квадрату расстояния. Для больших расстояний подходящего базиса уже не найти, и потому используют свойства света и зависимость частоты света от скорости излучающего объекта (эффект Доплера). Эти далекие галактики представляют собой островные вселенные, каждая из которых содержит миллиарды звезд.

  Так как подавляющее большинство  известных нам звезд слишком  далеки, чтобы методом параллакса можно было вычислить расстояние до них, пришлось придумать иные методы. Один из них основан на изучении цефеид, распространенного и очень важного типа физически переменных звезд. Цефеиды — это нестационарные пульсирующие звезды, которые периодически раздуваются и сжимаются, меняя свой блеск. Между периодом пульсаций цефеид и их светимостью существует зависимость, получившая название «период-светимость». По ней можно определить светимость и вычислить расстояние до цефеиды, если из наблюдения известны видимый блеск и период изменения блеска цефеиды. Цефеиды видны с больших расстояний, и, обнаруживая их в далеких звездных системах, можно определять расстояние до этих систем.

  В 20-е гг. XX в. американский астроном Э. Хаббл по фотографиям туманности Андромеды, полученным на крупнейшем телескопе того времени, измерил характеристики отдельных звезд и дал несколько независимых оценок расстояния до нее. Так он доказал, что туманность Андромеды находится вне Млечного Пути. Затем Хаббл исследовал Вселенную до огромного расстояния — 500 млн св. лет. Хотя не все открытые туманности оказались галактиками, ученый выявил в этой области до 100 млн других галактик. В настоящее время во Вселенной обнаружены галактики разных типов, и их число примерно около 10 млрд.

  В науке производятся количественные сравнения, и потому важны измерения. Измерение — это определение неизвестной величины известной установленной единицей меры. Однородность и изотропность пространства определяют возможность измерять расстояния с помощью единого эталона длины. Расстоянием между двумя точками принято называть длину отрезка, соединяющего эти точки. Измерения с помощью эталона требуют непосредственного контакта с точками, между которыми измеряется расстояние. За исключением простейших случаев измерений (с помощью линейки или рулетки) такой способ основан на кинематике — разделе механики, дающем математическое описание всевозможных видов механического движения безотносительно к тем причинам, которые обеспечивают осуществление каждого конкретного вида движения.

  Для измерений длины в физике пользуются метрической системой, которая сложилась исторически и связана с периодом Великой французской революции. Первоначально метр был определен как одна десятимиллионная доля расстояния от экватора до Северного полюса вдоль меридиана, проходящего через Париж. В 1889 г. метр официально был определен как расстояние между двумя параллельными метками, нанесенными на платиноиридиевом брусе. Он хранится в строго определенных условиях в Международном бюро мер и весов в Севре, пригороде Парижа. Сравнить длину тела с эталонным метром с погрешностью до 2 • 10-7 можно с помощью прецизионного микроскопа. Эта точность определяется толщиной меток. В 1961 г. в качестве эталона длины была принята длина волны в вакууме оранжевого света, испускаемого изотопом Кr-86. В точности 1 м составляет 1 650 763,73 длины волны Кr-86. В 1983 г. на XVII Генуэзской конференции по мерам и весам было принято новое определение метра: «Метр — длина пути, проходимого светом в вакууме за 1/299792458 долю секунды».

  В микромире расстояния измеряют при  помощи явлений дифракции пучков фотонов или других элементарных частиц на кристаллических решетках. В качестве эталона в этом случае выступает длина волны, которая в соответствии с положениями корпускулярно-волнового дуализма описывает поведение частиц в пучке. В микромире используют единицы длины 1 мкм = = 10-6 м; 1 нм = 10-9 м. Длина волны красного цвета — 720 нм, а фиолетового — 430 нм. Размер пылинки 10-4 м, диаметр молекулы ДНК 2 • 10-9 м, атома водорода 3 • 10-11 м.

1.3. Световая волна — волна электромагнитная

  Световая  волна — это  волна электромагнитная, «бегущая в пространстве и отделенная от испустивших ее зарядов», как выразился Вайскопф. Открытие Максвелла он сравнил по важности с открытием закона тяготения Ньютона. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и вывел фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего закона тяготения, труды Максвелла — понятия электромагнитного поля и к установлению законов его распространения.

  Если  электромагнитное поле может существовать независимо от материального носителя, то дальнодействие должно уступить место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Идеи тока смещения (1861), электромагнитных волн и электромагнитной природы света (1865) были настолько смелыми и необычными, что даже следующее поколение физиков не сразу приняло теорию Максвелла. В 1888 г. Г. Герц открыл электромагнитные волны, но такого активного противника теории Максвелла, как У. Томсон (Кельвин), смогли убедить лишь эксперименты П.Н.Лебедева, открывшего в 1889 г. существование светового давления.

  Плотность потока энергии в  волне, распределенной в некоторой области пространства и колеблющейся во времени, — это количество электромагнитной энергии, проходящей через единичную площадку, перпендикулярную направлению распространения, в единицу времени. Плотность потока энергии обозначают буквой SIT. Для плоской волны с Е = В энергия делится поровну между электрической и магнитной компонентами, поэтому удобно записать: SП= Е2 = В2.

  Электромагнитное  излучение Солнца переносит на Землю  его энергию, снабжая нас теплотой и светом. Учение о движении энергии было разработано русским физиком Н.А.Умовым. Он показал, что изменение энергии внутри объема определяется ее потоком, проходящим через поверхность. Через 11 лет после публикации Умова английский физик лорд Дж. Рэлей представил Королевскому обществу сообщение Дж. Пойтинга «О переносе энергии в электромагнитном поле», где содержались независимо полученные аналогичные результаты. Поэтому в настоящее время вектор = [Е, Н] называют вектором Умова—Пойтинга.

Информация о работе Контрольная работа по "Концепция современного естествознания"