Становление современного естествознания

Автор работы: Пользователь скрыл имя, 26 Января 2014 в 13:35, курсовая работа

Краткое описание

Стремление человека к познанию окружающего мира бесконечно. Одним из средств этого познания является естествознание. Оно активно участвует в формировании мировоззрения каждого человека отдельно и общества в целом. К мировоззрению относится также социальная установка на понимание смысла жизни, жизненных идеалов, целей общества и средств их достижения. Мировоззрение - совокупность определенных знаний, комплекс норм и убеждений, проявляющихся в содержании практической деятельности. Определенный мировоззренческий и методологический подход к пониманию мира и объяснению эмпирических фактов выражает стиль мышления.

Содержание

Введение
Основная часть
Заключение
Список используемой литературы

Вложенные файлы: 1 файл

ГОУ ВПО Росздрава.doc

— 1.03 Мб (Скачать файл)

В рамках модели <черного ящика> внутреннее устройство системы изображают в виде непрозрачного ящика, выделенного из окружающей среды (рис. 4.1). Эта модель отражает два важных свойства системы - целостность и обособленность от среды [22]. Система не является полностью изолированной от среды, она связана со средой и с помощью этих связей взаимодействует с ней (входы и выходы системы). В модели <черного ящика> отсутствуют сведения о внутреннем содержании системы, а задаются, фиксируются и перечисляются только входные и выходные связи системы со средой. В одних случаях достаточно содержательного словесного описания входов и выходов; тогда модель <черного ящика> является просто их списком. В других случаях требуется количественное описание некоторых или всех входов и выходов с заданием двух множеств Хя У входных и выходных переменных.

Модель <черного ящика> в ряде случаев является единственно применимой при изучении систем. Например, при  исследовании психики человека или  влияния лекарства на живой организм ученый лишен возможности вмешательства в систему иначе, как только через ее входы, и делает выводы лишь на основании наблюдения за ее выходами. Часто приходится ограничиваться моделью <черного ящика> в связи с отсутствием данных о внутреннем устройстве системы. Например, мы не знаем, как <устроен> электрон, но знаем, как он взаимодействует с электрическими и магнитными полями, с гравитационным полем. Это и есть описание электрона на уровне модели <черного ящика>.

Для решения вопросов, касающихся внутреннего устройства системы, недостаточно только модели <черного ящика> -необходимы более развитые модели. Например, любая система внутренне неоднородна, что позволяет различать составные части самой системы, причем некоторые части системы в свою очередь могут быть разбиты на составные части и т.д. Части системы, которые рассматриваются как неделимые, называют элементами, а части системы, состоящие более чем из одного элемента, - подсистемами. В результате получается модель состава системы, которая описывает, из каких подсистем и элементов состоит система (рис. 4.2) [22].

Для того чтобы составить представление  о свойствах изучаемого объекта, часто бывает необходимо выявить  определенные связи (отношения) между  элементами. Совокупность связей элементов друг с другом, обеспечивающих целостность системы, называют ее структурой. Модель структуры в простейшем виде представляет собой список существенных для решения конкретной задачи отношений. Так, при расчете механизма не учитываются силы взаимного притяжения его деталей, хотя, согласно закону всемирного тяготения, такие силы объективно существуют; в то же время вес деталей (т.е. сила их притяжения к Земле) учитывается обязательно.

Поскольку все структурные схемы  имеют много общего, возможно абстрагирование от их содержательной стороны и соответственно построение схем, в которых обозначены только элементы и связи между ними, а также (в случае необходимости) разница между элементами и между связями. Такая

схема называется графом. Граф (рис. 4.3) состоит из обозначений элементов произвольной природы - вершин и обозначений связей между ними - ребер (дуг). Если необходимо отразить несимметричность некоторых связей, линию, изображающую ребро, снабжают стрелкой. Если направления связей не обозначаются, граф называют неориентированным, при наличии стрелок - ориентированным (полностью или частично). Любая пара вершин может быть соединена с любым количеством ребер; вершина может быть соединена сама с собой (тогда ребро называют петлей). Если в графе требуется отразить другие различия между элементами или связями, то либо приписывают разным ребрам различные веса (взвешенные графы), либо раскрашивают вершины или ребра (раскрашенные графы) [2, 21].

Графы могут изображать любые структуры, в том числе в различных  областях естествознания. Так, при анализе  природных систем часто используют линейные, древовидные (иерархические), матричные и сетевые структуры (рис. 4.4). Например, в виде древовидного графа можно изобразить речной бассейн и изучать соотношение притоков и главного русла.

Если соединить модели <черного  ящика>, состава и структуры, то образуется модель, которую часто  называют <белый (прозрачный) ящик> (рис. 4.5). В <белом ящике> указываются все элементы системы, все связи между элементами внутри системы и связи определенных элементов с окружающей средой (входы и выходы системы). Такие модели часто называют структурными схемами системы [22].

Если при исследовании системы не учитываются ее изменения во времени, то модель называется статической. Чтобы понять и описать, как система работает (функционирует) и что

происходит с ней самой и  с окружающей средой в ходе ее развития, нужны такие модели, которые отражают поведение систем, описывают происходящие с течением времени изменения, последовательность этапов, операций, действий, причинно-следственные связи. Модели, отображающие изменения в системах в течение времени, называются динамическими.

Разработано большое количество динамических моделей, описывающих процессы с  различной степенью детальности: от самого общего понятия динамики, движения вообще, до формальных математических моделей конкретных процессов типа уравнений движения в механике или волновых уравнений в теории поля.

Обычно говорят о двух типах  динамики системы: функционировании, т.е. устойчивой последовательности постоянно действующих процессов в системах, обеспечивающей сохранение того или иного характерного для значительного отрезка времени состояния этой системы, и развитии - необратимом, направленном, закономерном изменении системы, которое может привести к смене структуры системы. Типы динамических моделей такие же, как и статических, но элементы этих моделей имеют временной характер. Так, динамический вариант <черного ящика> содержит указания о начальном (<вход>) и конечном (<выход>) состояниях системы; модели состава соответствует перечень этапов в некоторой упорядоченной последовательности действий; динамический вариант <белого ящика> - подробное описание происходящего или планируемого процесса

4.3. Системные исследования

Информационные аспекты  изучения систем

Информация - специфическая  форма взаимодействия между объектами любой физической природы или, точнее, такой аспект взаимодействия, который несет сведения о взаимодействующих объектах. В сущности информация - мера организованности системы в Противоположность понятию энтропии как меры неорганизованности [6, 7, 22, 24, 32].

Представление об энтропии как мере неорганизованности было введено Р. Клаузиусом в связи с изучением  термодинамических явлений. Л. Больцман дал статистическую интерпретацию  энтропии, позволившую рассматривать энтропию как меру вероятности пребывания системы в конкретном состоянии. Больцман показал, что природные процессы стремятся перевести термодинамическую систему из состояний менее вероятных в состояния более вероятные, т.е. привести систему в равновесное состояние, для которого значения энтропии (неупорядоченности) максимальны. После построения в середине XX в. К.Э. Шенноном теории информации оказалось, что формула Больцмана для термодинамической энтропии и формула Шеннона для информационной энтропии тождественны [32]. Таким образом, понятие энтропии приобрело более универсальный смысл в изучении систем различного происхождения.

Изучение потоков информации в  системах имеет очень большое  значение. Так, если вещественные и  энергетические потоки обеспечивают целостность  системы и возможность ее существования, то потоки информации, переносимые сигналами, организуют все ее функционирование, управляют ею. Поэтому при изучении любого объекта как системы не следует ограничиваться рассмотрением и описанием вещественной и энергетической его сторон, необходимо проводить исследование информационных аспектов системы (сигналов, информационных потоков, организации, управления и т.д.).

Информационный анализ систем использует представление о сигналах - носителях информации, средстве перенесения информации в пространстве и времени. В качестве сигналов выступают состояния некоторых объектов: чтобы два объекта содержали информацию друг о друге, необходимо соответствие между их состояниями; тогда по состоянию одного объекта можно судить о состоянии другого. Соответствие между состояниями двух объектов устанавливается либо в результате непосредственного взаимодействия, либо с помощью взаимодействия с промежуточными объектами. Например, от преподавателя до ушей студентов звук переносят колебания воздуха.

Не всякое состояние имеет сигнальные свойства, поскольку объект взаимодействует  не только с тем объектом, информацию о котором требуется получить, но и с другими объектами,

в результате чего соответствие состояний  ослабевает. Условия, обеспечивающие установление и способствующие сохранению сигнального соответствия состояний, называют кодом, а посторонние воздействия, нарушающие это соответствие, - помехами или шумами. Нарушение соответствия состояний возможно не только вследствие помех, но и из-за рассогласования кодов взаимодействующих объектов. При этом предполагается, что в природных системах согласование кодов происходит в самой структуре систем путем естественного отбора различных вариантов.

Сигналы делятся на два типа:

1)  статические сигналы, являющиеся стабильными состояниями физических объектов (например, книга, фотография, магнитофонная запись, состояние памяти компьютера, положение триангуляционной вышки и т.д.);

2) динамические сигналы, в качестве которых могут выступать динамические состояния силовых полей. Изменение состояния таких полей приводит к распространению возмущения, конфигурация которого во время распространения обладает определенной устойчивостью, что обеспечивает сохранение сигнальных свойств. Примерами таких сигналов могут служить звуки (изменение состояния поля сил упругости в газе, жидкости или твердом теле), световые и радиосигналы (изменения состояния электромагнитного поля). Так как сигналы - это состояния физических объектов, можно

математически описать данное явление. Например, можно зафиксировать звуковые колебания, соответствующие конкретному сигналу, в виде зависимости давления х от времени t и изобразить этот сигнал функцией x(t). Так же функцией можно изобразить и статический сигнал, например запись" звука на магнитной ленте, поставив в соответствие параметру t протяженность (длину) записи. Однако между просто состоянием объекта и сигналом имеется существенное различие: единственная функция x(t) не исчерпывает всех важных свойств сигналов. Дело в том, что понятие функции предполагает, что нам известно значение х (либо правило его вычисления) для каждого интервала времени t. Но если это известно получателю сигнала, то отпадает необходимость в его передаче, так как

функция x(t) может быть и без этого воспроизведена на приемном конце. Следовательно, функция приобретает сигнальные свойства только тогда, когда она является одной из возможных функций. Моделью сигнала может быть набор (ансамбль) функций параметра t, причем до передачи сигнала неизвестно, какая из них будет отправлена. Каждая такая конкретная функция называется реализацией. Если ввести вероятностную меру на множество реализации, то получается математическая модель, называемая случайным процессом.

Специфическим для теории информации является понятие неопределенности случайного объекта, для которой и была введена количественная мера - энтропия. Пусть, например, некоторое событие может произойти с вероятностью 0,99 (99%) и не произойти с вероятностью 0,01 (1%), а другое событие имеет вероятности соответственно 0,5 (50%) и 0,5 (50%). В первом случае результатом опыта <почти наверняка> является наступление события, а во втором неопределенность исхода так велика, что от прогноза разумнее воздержаться.

В качестве меры неопределенности случайного объекта А с конечным множеством возможных состояний А, ,..., А" соответствующими вероятностями р, ,..., р" принимают величину

которую называют энтропией случайного объекта А (или распределения вероятностей {pi}) и используют в качестве меры неопределенности. Обобщение этой меры на непрерывные случайные величины выглядит следующим образом:

Функция h(X) получила название дифференциальной энтропии и является аналогом энтропии дискретной (прерывной) величины.

Это позволяет интерпретировать процесс  получения информации как изменение  неопределенности в результате приема сигнала. Тогда количество информации можно представить как меру снятой неопределенности: числовое значение количества информации о некотором объекте равно разности апри-

орной и апостериорной энтропии этого объекта, иначе говоря, как  меру уменьшения неопределенности в результате получения сигнала. При этом в результате обработки уже полученных данных содержащееся в них количество информации не может быть увеличено. Следовательно, обработка делается лишь для представления информации в более удобном, компактном виде и в лучшем случае без потери полезной информации.

Информация и энтропия - безразмерные величины. За единицу энтропии принимают  неопределенность случайного объекта, такого, что

т.е. энтропия (неупорядоченность) равна  единице (достигает максимального  значения) при данном т, когда все исходы равновероятны, и равна нулю в том случае, когда одна из pi равна единице, а остальные равны нулю, т.е. когда исход опыта достоверен. Следует конкретизировать число т состояний объекта и основание логарифма. Наименьшее число возможных состояний, при котором объект остается случайным, равняется 2 (т = 2). Если в качестве основания логарифма также взять число 2, то единицей неопределенности служит энтропия объекта с двумя равновероятными состояниями - бит. Например, количество информации 1 бит дает бросание монеты. Для непрерывных величин обычно употребляется другая единица (нит), которая получается при использовании натурального логарифма.

При обмене информацией между системами  возникают специфические эффекты, полезные для анализа систем. Например, избыточность - явление не всегда отрицательное. При искажениях, выпадениях и вставках символов именно избыточность позволяет обнаружить и исправить ошибки.

Важным понятием информационного  характера является скорость передачи информации - количество информации, передаваемое в единицу времени. В дискретном случае единицей времени удобно считать время передачи одного символа. Для непрерывных каналов единицей времени может служить либо обычная единица (например, секунда), либо интервал между отсчетами. Для более наглядного представления об этой вели-

чине укажем, что темп обычной  речи человека соответствует скорости примерно 20 бит/с, муравьи обмениваются информацией (путем касания усиками) со скоростью около 0,1 бит/с. Скорость передачи информации по каналу связи зависит от многих факторов (энергия сигнала, количество символов в алфавите, избыточность, способ кодирования и декодирования и т.д.) и не превышает некоторого предела, называемого пропускной способностью канала. Например, пропускные способности зрительного, слухового и тактильного (осязательного) каналов связи человека составляют приблизительно 50 бит/с (заметим, что распространено мнение о сильном отличии зрительного канала). Если включить в канал и <исполнительные> органы человека (например, предложить ему нажимать педаль или кнопку в темпе получения сигналов), то пропускная способность снизится до 10 бит/с.

Информация о работе Становление современного естествознания