Фундаментальное взаимодействие элементарных частиц

Автор работы: Пользователь скрыл имя, 15 Октября 2012 в 16:15, курсовая работа

Краткое описание

Современные достижения физики высоких энергий все больше укрепляют представление, что многообразие свойств Природы обусловлено взаимодействующими элементарными частицами. Дать неформальное определение элементарной частицы, по-видимому, невозможно, поскольку речь идет о самых первичных элементах материи. На качественном уровне можно говорить, что истинно элементарными частицами называются физические объекты, которые не имеют составных частей.

Содержание

.Введение
2.Гравитационное взаимодействие
а)Гравитация
б)Понятие о квантовой гравитации
3.Сильное взаимодействие
а)Адроны и кварки
б)Странные частицы
в)Очарованный кварк
г) -кварк и другие
д)Ароматы и поколения
е)Цвет и глюоны
4. Электромагнитное взаимодействие
5. Слабое взаимодействие
а) Слабые распады
б) Слабые реакции
в) Нейтринные массы и осцилляции. Двойной -распад
г) Особенности слабого взаимодействия
6. Тенденции объединения взаимодействий
7. Список используемой литературы

Вложенные файлы: 1 файл

Фундаментальные взаимодействия.doc

— 802.50 Кб (Скачать файл)

В 1980 г. были опубликованы результаты эксперимента, проведенного в Институте теоретической и  экспериментальной физики в Москве, согласно которым масса электронного нейтрино отлична от нуля: 14 эВ 46 эВ. Этот вывод был сделан на основе измерения спектра электронов в -распаде трития:

Когда электрон вылетает с энергией, близкой к максимальной, то кинетическая энергия нейтрино близка к нулю. Это создает оптимальные условия для обнаружения возможной массы нейтрино. Измеряя форму спектра электронов вблизи его верхней границы, экспериментаторы пришли к указанному выше результату. Распад .трития с его рекордно малым энерговыделением особенно подходит для таких измерений.

В связи с вопросом о нейтринных массах возрос интерес  к поискам двух явлений: нейтринных осцилляции и двойного -распада.

Впервые на возможность  существования нейтринных осцилляции указал в середине 50-х годов Понтекорво, вскоре после того, как Пайс и  Пиччиони предсказали осцилляционные эффекты в пучках нейтральных K-мезонов. В настоящее время число работ, посвященных теоретическому обсуждению нейтринных осцилляции, исчисляется сотнями. В ряде лабораторий на ядерных реакторах и ускорителях идут экспериментальные поиски этого явления.

Попытки наблюдать осцилляции на ускорителях также пока что не дали положительного результата. Не обнаружены осцилляции и у нейтрино, рожденных космическими лучами в атмосфере Земли. Наиболее точные измерения такого рода были осуществлены в Баксанской нейтринной обсерватории. Здесь наблюдали реакции, инициированные нейтрино, рожденными над Австралией и прошедшими сквозь земной шар. Несмотря на такой большой путь от источника до детектора, никаких признаков утечки (по сравнению с расчетным потоком нейтрино видно не было.

Обычно лептоны характеризуют лептонным квантовым числом L, которое равно +1 для и —1 для  . В стандартной теории слабого взаимодействия лептонное число сохраняется. Если, однако, нейтрино обладают майорановыми массами, то лептонное число не сохраняется. При этом, вместо трех нейтрино и трех антинейтрино, мы имели бы дело с шестью истинно нейтральными, так называемыми майорановыми нейтрино. Входящие в слабые токи нейтральные состояния представляли бы собой суперпозиции этих майорановых нейтрино.

Несохранение лептонного числа делает возможным очень своеобразное явление — безнейтринный двойной -распад. В обычном -распаде происходит слабый переход

 




Рис. 14                  Рис.   15

одного d-кварка в один u-кварк. В отличие от этого, в двойном -распаде два d-кварка одновременно переходят в два u-кварка. Если при этом антинейтрино испускаются (рис. 14), то распад называется двухнейтринным ; если же виртуальное нейтрино, испущенное одним кварком, поглощается другим кварком (рис. 15), то распад называется безнейтринным . Последний процесс возможен, только если нейтрино майораново, так как лептонный заряд в этом процессе не сохраняется. Оба этих распада идут во втором порядке теории возмущений по константе слабого взаимодействия GF, и поэтому ожидаемые времена полураспада , для них очень велики.

Вероятность двухнейтринного  распада можно рассчитать более или менее надежно. (Она сильно меняется от ядра к ядру, поскольку очень чувствительна к величине энерговыделения.) В отличие от этого, вероятность безнейтринного распада надежно предсказать нельзя, пока остаются неизвестными степень и механизм несохранения лептонного числа.

Вопрос о том, какие  частицы являются переносчиками  слабого взаимодействия, долгое время  был неясен. Понимания удалось  достичь сравнительно недавно в  рамках объединенной теории электрослабых взаимодействий - теории Вайнберга-Салама-Глэшоу. В настоящее время общепринято, что переносчиками слабого взаимодействия являются так называемые - и Z0-бозоны. Это заряженные и нейтральная Z0 элементарные частицы со спином 1 и массами, равными по порядку величины 100 mp.

 

Особенности  слабого  взаимодействия.

 

Отличительными признаками слабых процессов являются следующие.

  1. Их слабость (медленность), выражающаяся в том, что вероятность этих  процессов   на  много  порядков  меньше вероятностей сильных и электромагнитных процессов.
  2. Малый  радиус взаимодействия — как минимум  на два порядка меньший, чем радиус сильного взаимодействия. Ни в одном из слабых процессов не удалось до 1982 г. об наружить каких-либо отклонений  от точечного четырехфермионного взаимодействия.
  3. Сильное, максимально возможное несохранение пространственной и зарядовой четностей. Так, в заряженные токи входят только левые компоненты спиноров, описывающих частицы, и только правые компоненты спиноров,описывающих античастицы.
  4. Несохранение СР-четности.
  5. Несохранение ароматов (странности, чарма и т. д.).
  6. То обстоятельство, что только в слабых взаимодействиях принимают участие нейтрино.

Согласно электрослабой  теории слабые взаимодействия заряженных токов обусловлены обменами W-бозонами, а нейтральных — Z-бозонами, подобно тому как взаимодействие электромагнитных токов обусловлено обменом фотонами. При этом слабость и малый радиус слабого взаимодействия объясняются тем, что, в отличие от фотонов, W- и Z-бозоны — очень тяжелые частицы. Остальные особенности слабого взаимодействия прямо заложены в предположении о форме исходных фермионных токов теории.

Тенденции объединения  взаимодействий.

 

Мы видим, что на квантовом  уровне все фундаментальные взаимодействия проявляют себя одинаковым образом. Элементарная частица вещества испускает  элементарную частицу - переносчик взаимодействия, которая поглощается другой элементарной частицей вещества. Это ведет к взаимовлиянию частиц вещества друг на друга.

Безразмерная константа  связи сильного взаимодействия может  быть построена по аналогии с постоянной тонкой структуры в виде . Если сравнить безразмерные константы связи, то легко заметить, что самым слабым является гравитационное взаимодействие, а затем располагаются слабое, электромагнитное и сильное.

Если принять во внимание уже развитую объединенную теорию электрослабых взаимодействий, называемую сейчас стандартной, и следовать тенденции объединения, то возникает проблема построения единой теории электрослабого и сильного взаимодействий. В настоящее время созданы модели такой единой теории, получившие название модели великого объединения. Все эти модели имеют много общих моментов, в частности характерная энергия объединения оказывается порядка 1015 ГэВ, что значительно превосходит характерную энергию объединения электромагнитных и слабых взаимодействий. Отсюда вытекает, что прямое экспериментальное исследование великого объединения выглядит проблематичным даже в достаточно отдаленном будущем. Для сравнения отметим, что наибольшая энергия, достижимая на современных ускорителях, не превышает 103 ГэВ. Поэтому если и будут получены какие-либо экспериментальные данные относительно великого объединения, то они могут носить только косвенный характер. В частности, модели великого объединения предсказывают распад протона и существование магнитного монополя большой массы. Экспериментальное подтверждение этих предсказаний было бы грандиозным триумфом тенденций объединения.

Общая картина разделения единого великого взаимодействия на отдельные сильное, слабое и электромагнитное взаимодействия выглядит следующим образом. При энергиях порядка 1015 ГэВ и выше существует единое взаимодействие. Когда энергия становится ниже 1015 ГэВ, сильное и электрослабое взаимодействия отделяются друг от друга и представляются как различные фундаментальные взаимодействия. При дальнейшем уменьшении энергии ниже 102 ГэВ происходит отделение слабого и электромагнитного взаимодействий. В результате на масштабе энергий, характерных для физики макроскопических явлений, три рассматриваемых взаимодействия выглядят как не имеющие единой природы.

Заметим теперь, что энергия 1015 ГэВ отстоит не так далеко от планковской энергии

ГэВ,

при которой становятся существенными квантовогравитационные эффекты. Поэтому теория великого объединения  с необходимостью ведет к проблеме квантовой гравитации. Если далее следовать тенденции объединения, мы должны принять идею о существовании одного всеобъемлющего фундаментального взаимодействия, которое разделяется на отдельные гравитационное, сильное, слабое и электромагнитное последовательно по мере понижения энергии от планковского значения до энергий, меньших 102 ГэВ.

Построение такой грандиозной  объединяющей теории, по-видимому, неосуществимо в рамках системы идей, приведших к стандартной теории электрослабых взаимодействий и моделям великого объединения. Требуется привлечение новых, возможно кажущихся сумасшедшими, представлений, идей, методов. Несмотря на очень интересные подходы, развитые в последнее время, такие, как супергравитация и теория струн, проблема объединения всех фундаментальных взаимодействий остается открытой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список используемой литературы.

 

  1. Окунь Л.Б. Физика элементарных частиц.М.: Наука, 1988 г.
  2. Соросовский образовательный журнал, № 5, 1997 г.
  3. Соросовский образовательный журнал, № 9, 1996 г.
  4. Окунь Л.Б. Лептоны и кварки. М.: Наука, 1982 г.
  5. Наумов А.И. Физика ядра и элементарных частиц.М.: Наука, 1992 г.

Информация о работе Фундаментальное взаимодействие элементарных частиц