Определение спроса на грузовые перевозки и особенности их планирования (на примере ООО «ФорвардГрупп»)

Автор работы: Пользователь скрыл имя, 14 Декабря 2014 в 15:11, курсовая работа

Краткое описание

Транспорт является одной из ключевых отраслей любого государства. Объем транспортных услуг во многом зависит от состояния экономики страны. Однако сам транспорт часто стимулирует повышение уровня активности экономики. Он освобождает возможности, таящиеся в слаборазвитых регионах страны или мира, позволяет расширить масштабы производства, связать производство и потребителей.
Основной задачей транспорта является своевременное, качественное и полное удовлетворение потребностей народного хозяйства и населения в перевозках.

Содержание

Введение
Логистика грузовых перевозок
1.1 Логистические особенности перевозок грузов различными видами транспорта………………………………………………………………………5
1.2 Особенности формирования спроса на грузовые автоперевозки…….11
1.3 Типы грузовых автомобилей (по грузоподъемности)…………………14
1.4 Планирование грузоперевозок………………………………………….18
2. Стратегическое планирование грузоперевозок на предприятии
2.1 Определение спроса на грузовые перевозки и их планирование по видам транспорта……………………………………………………………………23
2.2 Планирование альтернативы транспортировки и критериев выбора логистических посредников…………………………………………………26
2.3 Методы анализа и прогнозирования спроса на грузоперевозки……33
3. Планирование грузоперевозок ООО «ФорвардГрупп»………..41
3.1 Общая характеристика компании ООО «ФорвардГрупп»………….43
Заключение

Вложенные файлы: 1 файл

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ.docx

— 368.61 Кб (Скачать файл)

      В тех случаях, когда логистический менеджер самостоятельно решает проблему выбора перевозчика, он должен основываться на определенной схеме выбора, алгоритм которой похож на процедуру выбора поставщика. Если определен вид транспорта, то должен быть проведен анализ специфического рынка транспортных услуг, на котором действует, как правило, достаточно большое количество перевозчиков, имеющих разную организационно-правовую форму. Особенно активно и динамично в Беларуси развивается рынок автотранспортных услуг. Основными критериями предварительного отбора перевозчиков являются затраты на перевозку груза, надежность времени доставки, сохранность груза при перевозке. Процедура выбора затем дополняется системой других количественных и качественных показателей. В западной практике выбора перевозчиков часто используются специально разработанные ранговые системы показателей, одна из которых приведена в табл. 4.

       Простейшая схема выбора перевозчика с помощью ранжированных систем критериев (подобных приведенным в табл. 2) заключается в прямом сравнении суммарного рейтинга перевозчиков, полученного по алгоритму, приведенному на рис. 2

Рис. 2. Алгоритм выбора перевозчика. [10]

    Рассмотрим пример использования алгоритма выбора перевозчика согласно схеме рис. 2. [10]

                        Ранжирование критериев выбора перевозчика

Таблица 2

Наименование критерия (показателя)

Ранг

Надежность времени доставки (транзита)

1

Тарифы (затраты) транспортировки «от двери до двери»

2

Общее время транзита «от двери до двери»

3

Готовность перевозчика к переговорам об изменении тарифа

4

Финансовая стабильность перевозчика

5

Наличие дополнительного оборудования (по грузопереработке)

6

Частота сервиса

7

Наличие дополнительных услуг по комплектации и доставке груза

8

Потери и хищения груза (сохранность груза)

9

Экспедирование отправок

10

Квалификация персонала

11

Отслеживание отправок

12

Готовность перевозчика к переговорам об изменении сервиса

13

Гибкость схем маршрутизации перевозок

14

Сервис на линии

15

Процедура заявки (заказа транспортировки)

16

Качество организации продаж транспортных услуг

17

Специальное оборудование

18


 

     Наряду с перевозчиком основным логистическим посредником в перевозке является транспортно-экспедиционная фирма (или экспедитор).

     Дополнительными услугами, оказываемыми экспедитором клиенту, как правило, являются:

- получение  документов для экспорта-импорта  грузов;

- выполнение  таможенных формальностей;

- проверка  количества и состояния груза;

- погрузка-разгрузка  транспортных средств;

- уплата  пошлин, сборов и других расходов, связанных с транспортировкой;

- хранение, складирование, сортировка, комплектация  груза;

- информационные  услуги, страхование и т.п.

    Как видно из приведенного перечня услуг, транспортно-экспедиционные фирмы по существу интегрируют большое количество элементарных логистических активностей в комплексные и ключевые, хотя формально эти операции и функции не называются логистическими. В нашем законодательстве до сих пор, к сожалению, отсутствует нормативно-правовая база по логистике, в том числе транспортной. Этот перечень услуг постоянно расширяется как в объемном, так и в качественном плане. Многие транспортно-экспедиционные фирмы, располагая крупными грузовыми терминалами, осуществляют долговременное складское хранение ГП производителей, а в ряде случаев выкупают продукцию, выполняя функции крупных оптовых торговых посредников. Интегрируя логистические активности, связанные с транспортировкой, складированием, хранением, грузопереработкой, консолидацией и продажей продукции, транспортно-экспедиционные фирмы по существу преобразуются в логистические фирмы (центры), обеспечивая устойчивые рынки сбыта услуг, долговременную прибыль, а также снижая логистические затраты производителей ГП и улучшая качество логистического сервиса. Эти примеры наглядно демонстрируют тот факт, что интеграция логистических активностей во внешних ЛС является насущным требованием времени.

      Проблема выбора транспортно-экспедиционной фирмы решается аналогично выбору перевозчика, однако с расширенным перечнем показателей качества экспедиторских услуг. Необходимо отметить, что транспортно-экспедиционное обслуживание клиентуры осуществляется в основном для мелкопартионных, тарно-штучных грузов, а также контейнеров и пакетов (паллетов). Крупногабаритные промышленные, строительные грузы, сырьевые материалы, зерновые и т.п. доставляются, как правило, по прямым договорам грузовладельца с перевозчиком.

       К числу вспомогательных логистических партнеров по транспортировке (если экспедиторы не выполняют соответствующие функции самостоятельно) относятся страховые, охранные, информационные фирмы и компании, банки и другие финансовые учреждения, предприятия по грузопереработке, затариванию, упаковке, грузовые терминалы, а также специализированные агенты и брокеры. Системы критериев и показателей, а также процедуры выбора этих посредников чрезвычайно многообразны. Среди основных критериев выбора можно указать тарифы, надежность, финансовую устойчивость, комплексный характер сервиса и т.д.

 

 

 

 

 

 

 

 

2.3 Методы анализа и  прогнозирования спроса на грузоперевозки

        Основой для принятия всех важнейших решений по развитию и техническому обустройству транспортных систем является прогноз ожидаемых перевозок, которые в грузовом сообщении складываются:

  • из внутренних межрайонных и местных перевозок;
  • из экспортно-импортных перевозок;
  • из международных транзитных перевозок.

       Прогнозирование каждого из указанных видов перевозок имеет свои особенности, но обязательно учитывает положения рыночной теории спроса и предложения товаров и услуг. Перспективные объемы международных перевозок грузов определяются с использованием разнообразных методов прогнозирования, включая комплексный эвристический подход. В условиях крупных структурных сдвигов в экономике должны применяться как нормативные (использующие конкретное задание целевой зоны прогноза), так и дескриптивные (основанные на самоорганизации потоков) методы прогнозирования.

       При планировании и управлении логическими активностями часто используются различные методы и модели прогнозирования. От точности и достоверности прогнозов потребительского спроса, расходования материальных ресурсов (далее МР), уровня запасов и т.п. напрямую зависит эффективность реализации практически всех логистических концепций, особенно JIТ («точно в срок»), и другие. Логистические менеджеры в своей практической деятельности используют различные методы прогнозирования в зависимости от требуемой точности (достоверности), объема и вида исходной информации и других факторов, причем в большинстве случаев для этой цели применяются стандартные или индивидуальные компьютерные программы.            Основной сферой приложения этих методов в логистике является прогнозирование спроса и объема продаж готовой продукции (далее ГП). Для целей внутрипроизводственной логистики (операционного менеджмента), например, при использовании некоторых концепции большое значение имеет прогнозирование потребности в МР, что является актуальным для управления закупками и послепродажного сервиса (снабжения запасными частями).

Прогнозирование является неотъемлемой частью различных видов логистического планирования: стратегического, тактического, оперативного. Являясь средством научного обоснования плана, прогноз должен содержать необходимую информацию для планирования, включать вероятную оценку характера развития процесса логистического менеджмента и возможного пути реализации целей, поставленных перед ЛС. С наиболее общих позиций прогноз — это вероятностное суждение о состоянии логистического процесса, системы или отдельных элементов в определенный момент в будущем и (или) альтернативных путях достижения этого состояния.

      Экономический прогноз позволяет установить возможные направления и различные варианты развития логистических систем (далее ЛС), а также помогает в выборе конкретных целей ее функционирования. Поэтому основное назначение прогноза в логистике состоит в раскрытии тенденции изменения микро- и макрологистической среды и получения вероятностных количественных и качественных оценок динамики логистических активностей, необходимых персоналу менеджмента фирмы.

Общая схема прогнозирования имеет следующий вид (рис. 3).

Рис 3. Укрупненная схема процесса прогнозирования. [12]

      На схеме условно показано, что для получения прогноза (ум ) какого-либо параметра (у) объекта или процесса мы должны иметь определенную модель прогнозирования, которая использует ретроспективную (прошлую) информацию за определенный интервал времени в прошлом (период наблюдения или глубина ретроспекции), информацию о параметре «у» в настоящий момент времени и иногда прогнозную информацию о внешней среде. Точность и достоверность получаемого прогноза уи будет зависеть от объема, точности и достоверности исходной информации, корректности применяемого метода (модели) и глубины прогноза.

    В настоящее время насчитывается очень большое количество (около 200) различных методов прогнозирования, из которых подавляющая часть относится к фактографическим, т. е. методам, использующим количественную информацию о прошлом поведении объекта (процесса), — ретроспективную информацию. Одна из возможных классификаций методов прогнозирования приведена на рис. 4.

Рис. 4. Классификация методов прогнозирования. [12]

          В логистическом менеджменте чаще всего используются фактографические методы, для которых исходная информация имеет вид динамических (временных) рядов. Как правило, динамические ряды экономических или технико-экономических показателей, используемые в логистике, имеют небольшое количество данных (точек), поэтому называются короткими динамическими рядами.

       Изменения исходной ретроспективной информации носит случайный (стохастический) характер, поэтому большинство методов, применяемых логистическими менеджерами, для целей прогнозирования (например, потребительского спроса), являются вероятностно-статистическими. Рассмотрим характеристику основных методов прогнозирования объема грузоперевозок (табл. 3)

Таблица 3

Краткая характеристика основных методов прогнозирования

Наименование метода (модели)

Краткая характеристика

Период прогнозирования

Дельфи

Группа экспертов опрашивается с помощью специальной анкеты, в которой реакция на вопрос продуцирует следующий вопрос. Любой ряд информации (данных), пригодных для определенной группы экспертов и непригодный для другой, интерпретируется таким образом, чтобы вся информация была пригодна для прогнозирования. Этот метод элиминирует групповой эффект мажоритарной обработки.

Средне- и долгосрочный

Исследования рынка

Систематическая, формальная и сознательная процедура для отбора и тестирования гипотез о реальных рынках.

То же

Последовательных соглашений

Этот метод основан на допущении, что группа экспертов может сделать лучший прогноз, чем один эксперт. Не существует ограничений и поощряются обсуждения. Получаемые прогнозы иногда зависят от социальных факторов и могут отражать правдивые соглашения.

То же

Оценки уровня продаж

Мнения ,об уровнях продаж продукции могут быть обработаны по группам персонала продаж и часто достоверно отражают тенденции спроса и потребности покупателей.

Кратко- и среднесрочный

Прогнозирование мнений

Метод, в котором используются мнения и представления о будущих тенденциях персонала фирмы, а также иногда факты о сценариях отдельных функций, процессов и т.п. в будущем. В общем случае метод не является строго научным.

Средне- и долгосрочный

Метод исторических аналогий

Метод сравнительного анализа выставления на рынок и роста объема продаж новых товаров, основанный на прогнозировании подобных взаимозаменяемых товаров в прошлом.

Средне- и долгосрочный

Скользящего среднего

Каждая точка в исходном динамическом ряду сглаживается совокупностью нескольких точек путем арифметического осреднения для исключения влияния сезонности и нерегулярности данных.

Краткосрочный

Экспоненциального сглаживания

Этот метод похож на метод скользящего среднего, однако осреднение производится с определенными "весами", присваиваемыми исходным данным динамического ряда. Каждое последующее значение получается из предыдущего путем рекурсивной экспоненциальной процедуры, легко алгоритмизируемой для ЭВМ.

То же

Использования рядов Бокса-Дженкинса

Метод использует статистические модели обработки временных рядов.

Кратко- и среднесрочный

Классические динамические ряды

Метод для декомпозиции динамического ряда на сезонную волну, тренд и нерегулярную (случайную) компоненту. Является одним из лучших методов для прогнозирования в логистике на период от 3 до 12 месяцев.

То же

Проекция тренда

Заключается в построении аналитической формулы для тренда и продолжения ее на период прогноза. Имеет несколько вариаций: обычный, номинальный, логарифмический и т.д.

То же

Прогнозирование фокуса

Дает несколько простых решающих правил для получения достаточно точного прогноза на период до 3-х месяцев. Используется метод имитационного компьютерного моделирования ретроспективной информации.

Среднесрочный

Спектральный анализ

Применяется разложение динамического ряда на основные компоненты с соответствующими спектральными плотностями. Эти компоненты представляются геометрическими фигурами, ограниченными кривыми спектральных плотностей. Сортировка этих компонентов дает математическое выражение тренда.

Кратко- и среднесрочный

Регрессионные модели

Основан на "связывании" логистических показателей, например, спроса (или объема продаж) с несколькими переменными (факторами-аргументами) регрессионной модели. Отбор факторов в модель производится известными методами статистики. Программы регрессионногр анализа входят в стандартное математическое обеспечение ЭВМ.

То же

Эконометри-ческие модели

Эконометрическая модель — это система независимых регрессионных уравнений, описывающих определенный сектор

То же

экономической активности в области продаж ГП. Параметры регрессионных уравнений обычно оцениваются достаточно быстро. Как правило, эти модели относительно независимы в перспективе. Однако в совокупности они лучше отражают тенденцию оцениваемого показателя, чем одиночные регрессионные модели и прогнозы трендов.

 

Прогнозирование на основе коммерческих предложений

Эти обзоры производятся путем анализа коммерческой информации в средствах массовой информации о намерениях купить определенный продукт и предложениях о продаже. Рассчитываются средние индексы роста (спада) предполагаемого спроса на основе ретроспективной информации о продажах. Обычно дополняют аналитические модели и корректируют их.

Среднесрочный

МодеЛи входа-выхода

Метод анализа, основанный на информации о внутренних и внешних потоках товаров в определенном экономическом объекте (ЛС) или секторе рынка. Показывает, каким должен быть входной материальный поток для достижения определенного выхода. Применяется в специфических отраслях бизнеса.

То же

Экономическая модель входа-выхода

Представляет комбинацию эконометрической модели и модели входа-выхода. Модель входа-выхода при этом используется для прогнозирования долгосрочных тенденций в эконометрической модели.

Среднесрочный

Метод ведущих индикаторов

Использует динамические ряды экономических показателей, изменение которых позволяет отразить тенденцию для прогноза искомого показателя.

Кратко- и среднесрочный

Анализ жизненного цикла

Этот метод использует для прогнозирования спроса и объема продаж кривые жизненного цикла новых товаров. Фазы жизненного цикла аппроксимируются соответствующими аналитическими зависимостями.

Средне- и долгосрочный

Динамическое моделирование

Использует ЭВМ для имитационного динамического моделирования конечного объема продаж в точках розничной торговли и дистрибутивных центрах. Исходные параметры моделирования задаются политикой управления запасами, производственным расписанием и политикой закупок МР.

То же


Основной проблемой для логистического менеджмента является прогнозирование спроса. Наиболее часто на Западе для прогнозирования спроса используются классические динамические модели временных рядов, методы сглаживания, экстраполяции и множественные регрессионные модели.

Классическая мультипликативная модель прогноза спроса (объема продаж) имеет следующий вид (рис.5)

Рис. 5. Пример прогнозирования динамического ряда. [12]

        Из графика видно, что за исходный период наблюдения с 1990 по 1996 гг. имеется тенденция к возрастанию объема продаж, что характеризуется близким к экспоненте трендом, на который наложены периодические колебания, вызванные сезонными изменениями спроса. Далее, используя выбранный метод прогнозирования и заданную глубину прогноза (в примере 1 год), получаем параметры прогноза (Yn) и интервальную оценку прогноза (УнУв)=(Yn-δ, Yn+δ), где δ- доверительный интервал, определяемый из данной доверительной вероятности. Интервальная оценка, как правило, более достоверна, чем точечный прогноз и чаще востребуется логистическим менеджментом.

                         У = (Вт х Sт, х Т х Ст х Рт) + I ,

где У,— прогнозируемый показатель (спрос) на момент времени т;

Вт — базовый уровень спроса на момент т;

Sт — сезонная составляющая;

Т — компонента тренда, характеризующая тенденцию

возрастания или убывания спроса;

Ст — циклический фактор за период;

Рт — фактор, учитывающий продвижение товара;

I —  нерегулярная (или случайная) компонента. В тех или иных вариациях  формула используется в большинстве случаев для получения прогноза спроса различными методами.

Обычно логистические менеджеры фирм применяют прогнозирование спроса или объема продаж в совокупности с определенными логистическими активностями в снабжении, производстве и дистрибьюции. На схеме (рис 6) представлена интеграция прогнозирования объема продаж с производственным расписанием выпуска продукции.

Рис.6. Схема интеграции прогнозирования объема продаж и производственного расписания

       Ключевая роль транспортировки в логистике объясняется не только большим удельным весом транспортных расходов в общем составе логистических издержек, но и тем, что без транспортировки невозможно само существование материального потока. Зачастую транспортный сервис, дополненный операциями грузопереработки, например, на грузовых терминалах, включает подавляющее большинство логистических активностей для внешних и интегрированных ЛС. Поэтому нет ничего удивительного в том, что многие западные транспортно-экспедиторские фирмы называют себя логистическими фирмами, отражая по форме и по существу современную практику транспортировки грузов в развитых странах.

Информация о работе Определение спроса на грузовые перевозки и особенности их планирования (на примере ООО «ФорвардГрупп»)