Определенные и неопределенные интегралы

Автор работы: Пользователь скрыл имя, 23 Июня 2014 в 20:59, реферат

Краткое описание

Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной для F(x), т.е. .
Из этого определения следует, что задача нахождения первообразной обратна задаче дифференцирования: по заданной функции f(x ) требуется найти функцию F(x), производная которой равна f(x).
Первообразная определена неоднозначно: для функции первообразными будут и функция arctg x, и функция arctg x-10: . Для того, чтобы описать все множество первообразных функции f(x), рассмотрим

Вложенные файлы: 1 файл

математика.doc

— 1.49 Мб (Скачать файл)

11.1.3. Теорема существования определённого  интеграла. Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема по этому отрезку. 
Примем это утверждение без доказательства, поясним только его смысл. Интегрируемость функции означает существование конечного предела последовательности интегральных сумм, т.е. такого числа , что для любого найдётся такое число , что как только разбиение отрезка удовлетворяет неравенству , то, независимо от выбора точек выполняется неравенство . Требование непрерывности f(x) достаточно для интегрируемости, но не является необходимым. Интегрируемы функции, имеющие конечное или даже счётное число точек разрыва на [a,b] при условии их ограниченности (т.е. все точки разрыва должны быть точками разрыва первого рода). Неограниченная функция не может быть интегрируемой (идея доказательства этого утверждения: если f(x) неограничена на [a,b], то она неограничена на каком-либо [xi-1 , xi], т.е. на этом отрезке можно найти такую точку , что слагаемое , а следовательно, и вся интегральная сумма, будет больше любого наперед заданного числа).  
11.1.4. Геометрический смысл определённого интеграла. Как следует из пункта 11.1.1, если f(x) >0 на отрезке [a,b], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x).

 

11.2. Свойства определённого интеграла.

1. Линейность. Если функции y = f(x), y = g(x) интегрируемы по отрезку [a,b] , то по этому отрезку интегрируема их линейная комбинация A f(x) + B g(x) (A, B = const), и  
.  
Док-во: для любого разбиения отрезка и любого выбора точек выполняется . Перейдем в этом равенстве к пределу при . Так как существуют пределы интегральных сумм, стоящих в левой части равенства, то существует предел линейной комбинации этих сумм, следовательно, существует предел правой интегральной суммы, откуда следует истинность и утверждения, и равенства.  
2. Аддитивность. Если y = f(x) интегрируема по отрезку [a,b] и точка c принадлежит этому отрезку, то .  
Док-во. Если f(x) удовлетворяет условиям интегрируемости по отрезку [a,b], то она удовлетворяет условиям интегрируемости по отрезкам [a,c] и [c,b]. Будем брать такие разбиения отрезка [a,b] , чтобы точка c являлась одним из узлов xi: c = xi0, . Тогда . В этом равенстве первая сумма справа - интегральная сумма для , вторая - для . Переходим к пределу при . Пределы для всех трёх сумм существуют, и .  
Свойство аддитивности остаётся верным при любом расположении точек, если только функция интегрируема по самому широкому интервалу. Пусть, например, c < b < a, и f(x) интегрируема по [c, a]. Тогда, по доказанному, . Отсюда и из определения интеграла для случая, когда нижний предел больше верхнего, следует, что .  
При формулировании и доказательстве следующих свойств предполагаем, что b > a.  
3. Интеграл от единичной функции ( f(x) = 1). Если f(x) = 1, то .  
Док-во. Если f(x) = 1 , то для любого разбиения  
= xn - x0 = b – a, т.е любая интегральная сумма равна длине отрезка. Предел постоянной равен этой постоянной, откуда и следует доказываемое утверждение.  
4. Теорема об интегрировании неравенств. Если в любой точке выполняется неравенство , и функции f(x), g(x) интегрируемы по отрезку [a,b], то .  
Док-во. Для любого разбиения отрезка и любого выбора точек при . Переходя в этом неравенстве к пределу при , получаем требуемое неравенство.  
5. Теоремы об оценке интеграла.  
5.1. Если на отрезке [a,b] функция удовлетворяет неравенству , то .  
Док-во. Докажем левое неравенство (цифрами над знаками импликации обозначены номера применяемых ранее доказанных свойств): . Аналогично доказывается и правое неравенство.  
5.2. Если функция f(x) интегрируема по отрезку [a,b], то .  
Док-во. .  
6. Теорема о среднем. Если f(x) непрерывна на отрезке [a,b], то существует точка , такая что .  
Док-во. Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда . Число заключено между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка , такая что .  
Это свойство имеет простую геометрическую интерпретацию: если непрерывна на отрезке [a,b], то существует точка такая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

11.3. Вычисление определённого  интеграла.

Формула Ньютона-Лейбница.

11.3.1. Интеграл с переменным  верхним пределом. Значение определённого интеграла не зависит от того, какой буквой обозначена переменная интегрирования: (чтобы убедиться в этом, достаточно выписать интегральные суммы, они совпадают). В этом разделе переменную интегрирования будем обозначать буквой t, а буквой x обозначим верхний предел интегрирования. Будем считать, что верхний предел интеграла может меняться, т.е. что x - переменная, в результате интеграл будет функцией Ф(x) своего верхнего предела: . Легко доказать, что если f(t) интегрируема, то Ф(x) непрерывна, но для нас важнее следующая фундаментальная теорема:  
Теорема об интеграле с переменным верхним пределом. Если функция f(t) непрерывна в окрестности точки t = x, то в этой точке функция Ф(x) дифференцируема, и .  
Другими словами, производная определённого интеграла от непрерывной функции по верхнему пределу равна значению подынтегральной функции в этом пределе.  
Док-во. Дадим верхнему пределу x приращение . Тогда , где c - точка, лежащая между x и (существование такой точки утверждается теоремой о среднем; цифры над знаком равенства - номер применённого свойства определённого интеграла). . Устремим . При этом (c- точка, расположенная между x и ). Так как f(t) непрерывна в точке t = x, то . Следовательно, существует , и . Теорема доказана.

Отметим первое важное следствие этой теоремы. По существу, мы доказали, что любая непрерывная функция f(x) имеет первообразную, и эта первообразная определяется формулой . Другим важным следствием этой теоремы является формула Ньютона-Лейбница, или основная формула интегрального исчисления.

11.3.2. Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то .  
Док-во. Мы установили, что функция - первообразная непрерывной f(x). Так как F(x) - тоже первообразная, то Ф(x) = F(x) + C. Положим в этом равенстве x = a. Так как , то . В равенстве переобозначим переменные: для переменной интегрирования t вернёмся к обозначению x , верхний предел x обозначим b. Окончательно, .  
Разность в правой части формулы Ньютона-Лейбница обозначается специальным символом: (здесь читается как "подстановка от a до b"), поэтому формулу Ньютона-Лейбница обычно записывают так: .  
Пример применения формулы Ньютона-Лейбница: .

11.3.3. Формула интегрирования  по частям для определённого  интеграла. Если u(x), v(x) - непрерывно дифференцируемые функции, то .  
Док-во. Интегрируем равенство в пределах от a до b: . Функция в левом интеграле имеет первообразную uv, по формуле Ньютона-Лейбница , следовательно, , откуда и следует доказываемое равенство.  
Пример: .

11.3.4. Замена переменной в  определённом интеграле. Теорема. Пусть функция

    1. определена, непрерывно дифференцируема и монотонна на отрезке ,
    2. ,
    3. функция непрерывна на отрезке [a, b].

Тогда .

Док-во. Пусть F(x) - первообразная для функции f(x), т.е. , тогда - первообразная для функции . , что и требовалось доказать.

При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла.  
Пример:

.

 

Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается .  
Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.  
Примеры: 1. ; этот предел не существует; следовательно, исследуемый интеграл расходится.  
2. ; следовательно, интеграл сходится и равен .  
Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от до b : и в пределах от до : . В последнем случае f(x) определена на всей числовой оси, интегрируема по любому отрезку; c - произвольная (собственная) точка числовой оси; интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела. Пользуясь свойством аддитивности определённого интеграла, можно показать, что существование конечных пределов и их сумма не зависят от выбора точки c.  
Примеры: 3. . Интеграл сходится.  
4. следовательно, интеграл сходится и равен .  
Очевидно следующее утверждение, которое мы сформулируем для интеграла с бесконечным верхним пределом: сходится тогда и только тогда, когда для любого c, удовлетворяющего неравенству c > a, сходится интеграл (док-во: так как при a < c < b по свойству аддитивности , и от b не зависит, то конечный предел при для интеграла в левой части существует тогда и только тогда, когда существует конечный предел для интеграла в правой части равенства).

 
     Некоторые приложения интеграла  
 
     Площадь криволинейной трапеции

(f непрерывна и неотрицательна).

 
     Площадь фигуры, ограниченной линиями y = f(x), y = g(x), x = a, x = b,

 
     Площадь криволинейного сектора в полярных координатах

 
     Объем фигуры через площади поперечных сечений

 

Объем фигуры, полученной вращением криволинейной трапеции      

Вокруг оси      

Вокруг оси

 
     Длина кривой      

1. Заданной уравнением 

     

2. Заданной параметрически:      

a) на плоскости 

     

б) в пространстве

     

3. Заданной полярным  уравнением 

Площадь поверхности фигуры вращения      

1. Полученной вращением  кривой  вокруг оси Ox,

     

2. Полученной вращением  кривой  вокруг оси Ox,

 
     Центр масс кривой

( - плотность кривой).

 

 

     Масса:      

Статические моменты относительно координатных осей:

     

Координаты центра масс:

 
     Центр масс криволинейной трапеции

(плотность  постоянная)

 

 

     Масса:      

Статические моменты относительно координатных осей:

     

Координаты центра масс:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 



Информация о работе Определенные и неопределенные интегралы