Автор работы: Пользователь скрыл имя, 15 Января 2012 в 22:45, курсовая работа
Алгебра логики является частью, разделом бурно развивающейся сегодня науки – дискретной математики. Дискретная математика занимается изучением свойств структур конечного характера, которые возникаю как внутри математики, так и в её приложениях. Заметим, что классическая математика, в основном, занимается изучением свойств объектов непрерывного характера, хотя само деление математики на классическую и дискретную в значительной мере условно, поскольку между ними происходит активная циркуляция идей и методов, часто возникает необходимость исследования модели, обладающие как дискретными, так и непрерывными свойствами.
Глава 1: Теоретическая часть
Двоичная система счисления……………………………………………….4
Понятие алгебры логики………………………………8
Логические операции…………………………………11
1.4. Логическая формула…………………………………..14
Заключение……………………………………………………………16
Глава 2: Практическая часть.
2.1. Общая характеристика задачи ……………………….18
2.2. Описание алгоритма решения задачи………………..20
Список литературы…………………………………………………...24
Глава 1: Теоретическая часть
1.4. Логическая формула…………………………………..14
Заключение……………………………………………………
Глава 2: Практическая часть.
2.1. Общая характеристика задачи ……………………….18
2.2. Описание
алгоритма решения задачи………………..20
Список литературы…………………………………
Введение.
Алгебра логики является частью, разделом бурно развивающейся сегодня науки – дискретной математики. Дискретная математика занимается изучением свойств структур конечного характера, которые возникаю как внутри математики, так и в её приложениях. Заметим, что классическая математика, в основном, занимается изучением свойств объектов непрерывного характера, хотя само деление математики на классическую и дискретную в значительной мере условно, поскольку между ними происходит активная циркуляция идей и методов, часто возникает необходимость исследования модели, обладающие как дискретными, так и непрерывными свойствами. К числу структур, изучаемых дискретной математикой, могут быть отнесены конечные группы, конечные графы, математические модели преобразователей информации типа конечных автоматов или машин Тьюринга и др.
Математический
Отцом алгебры логики по праву считается английский математик ХIХ столетия Джордж Буль.
Большой вклад в становление и развитие алгебры логики внесли Августус де Морган (1806-1871), Уильям Стенли Джевонс (1835-1882), Платон Сергеевич Порецкий (1846-1907), Чарлз Сандерс Пирс (1839-1914), Андрей Андреевич Марков (1903-1979), Андрей Николаевич Колмогоров (1903-1987) и др.
Долгое время алгебра логики была известна достаточно узкому классу специалистов. Прошло почти 100 лет со времени создания алгебры логики Дж. Булем, прежде чем в 1938 году выдающийся американский математик и инженер Клод Шеннон (1916-2001) показал, что алгебра логики применима для описания самых разнообразных процессов, в том числе функционирования релейно-контактных и электронно-ламповых схем.
Глава 1: Теоретическая часть
Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII — XIX вв.). Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени.
Г.Лейбниц обратил на двоичную систему внимание миссионеров, отправлявшихся для проповеди христианства в Китай в надежде убедить китайского императора в том, что Бог (единица) сотворил все из ничего (нуля). Однако вплоть до 20 в. двоичную систему рассматривали как своего рода математический курьез, и время от времени раздавались предложения перейти от десятичной системы к восьмеричной или двенадцатиричной, но отнюдь не двоичной системе. Однако именно в двоичной системе арифметические операции особенно просты.
В двоичной системе не существует "таблицы сложения", которую нужно бы было запоминать, так как "перенос в старший разряд" начинается с 1 + 1 = 10. При сложении больших чисел необходимо лишь складывать по столбцам или разрядам, как в десятичной системе, памятуя лишь о том, что как только сумма в столбце достигает числа 2, двойка переносится в следующий столбец (влево) в виде единицы старшего разряда.
Вычитание производится так же, как в десятичной системе, не задумываясь о том, что теперь в случае необходимости нужно "занимать" из столбца слева 2, а не 10.
В двоичной таблице умножения единственный результат, отличный от нуля, соответствует 1?1 = 1. Каких-нибудь других "табличных" произведений, требующих запоминания, не существует, так как любое целое число больше единицы в двоичной системе по крайней мере "двузначно".
Умножение "столбиком" выполняется без труда, так как необходимость в "переносе в старший разряд" отпадает, за исключением сложения частичных произведений при получении окончательного ответа. Однако за эту легкость приходится "платить" большим числом знаков при умножении даже небольших чисел.
Деление "углом" в двоичной системе выполняется быстро, при этом нет необходимости в пробных делителях. По существу, деление становится своего рода непрерывным вычитанием, которое отличается необычайной "прозрачностью".
В компьютерах двоичная система особенно удобна тем, что двоичные цифры соответствуют тому, что электронная система может находиться лишь в одном из двух состояний - либо "выключено" (цепь разомкнута, двоичная цифра 0), либо "включено" (цепь замкнута, двоичная цифра 1).
Числа, записанные в двоичной системе, требуют большего числа знаков, чем их аналоги в десятичной системе, но при проектировании компьютеров, предназначенных для работы с числами, не превышающими 10 миллионов, оказалось, что легче оперировать с 24-разрядными двоичными числами, чем с семизначными десятичными числами. И в двоичной, и в десятичной системе суть состоит в позиционном принципе записи чисел, поэтому ясно, что современные суперкомпьютеры стали возможны благодаря тому, что четыре тысячи лет назад в Месопотамии было совершено важнейшее открытие в области обозначения чисел.
Выдающийся математик Лейбниц говорил: "Вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок". Позже двоичная система была забыта, и только в 1936 — 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем. Рассмотрим пример представления числа в двоичной системе счисления:
Пример 1. Переведём число 2000 в двоичную систему.
1. Делим 2000 на основание новой системы счисления — 2:
2000:2=1000(0 - остаток),
1000:2=500(0),
500:2=250(0),
250:2=125(0),
125:2=62(1),
62:2=31(0),
31:2=15(1),
15:2=7(1),
7:2=3(1),
3:2=1(1)
2. Собираем последнее частное от деления (всегда равно 1) и остатки от деления и записываем их по порядку, начиная снизу :
200010==111110100002
Для проверки переведём полученное число в десятичную систему счисления, для этого:
1. Выделим двоичные разряды числа, то есть, степени числа 2, начиная с 0-й:
1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
210 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 2' | 2° |
2. Запишем сумму произведений 0 и 1 на соответствующую степень числа 2 (см. представление числа в р-ричной системе счисления):
0*20+0*21+0*22+0*23+l*24+0*25+
Поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, а значений логических переменных тоже два: “1” и “0”.
Из этого следует два вывода:
Алгебра логики — это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. |
Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.
Логическое высказывание — это любoе повествовательное пpедлoжение, в oтнoшении кoтopoгo мoжно oднoзначнo сказать, истиннo oнo или лoжнo. |
Так, например, предложение "6 — четное число" следует считать высказыванием, так как оно истинное. Предложение "Рим — столица Франции" тоже высказывание, так как оно ложное.
Разумеется, не всякое предложение является логическим высказыванием. Высказываниями не являются, например, предложения "ученик десятого класса" и "информатика — интересный предмет". Первое предложение ничего не утверждает об ученике, а второе использует слишком неопределённое понятие "интересный предмет". Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла.
Предложения типа "в городе A более миллиона жителей", "у него голубые глаза" не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь. Такие предложения называются высказывательными формами.
Высказывательная форма — это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями. |
Алгебра логики рассматривает любое высказывание только с одной точки зрения — является ли оно истинным или ложным. Заметим, что зачастую трудно установить истинность высказывания. Так, например, высказывание "площадь поверхности Индийского океана равна 75 млн. кв. км" в одной ситуации можно посчитать ложным, а в другой — истинным. Ложным — так как указанное значение неточное и вообще не является постоянным. Истинным — если рассматривать его как некоторое приближение, приемлемое на практике.
Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если... , то", "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.