Автор работы: Пользователь скрыл имя, 27 Октября 2013 в 13:39, лекция
Как уже отмечалось, имеется целый ряд преимуществ производства органических продуктов биотехнологическими способами перед чисто химическими методами:
Многие сложные органические молекулы, такие, как белки и антибиотики, не могут практически быть синтезированы химическими способами;
Биоконверсия обеспечивает значительно больший выход целевого продукта;
Биологические системы функционируют при более низких температурах, менее высоких значениях рН (близких к нейтральному) и т. п.;
Каталитические биологические реакции намного специфичнее, чем реакции химического катализа;
Биологические процессы обеспечивают почти исключительно продукцию чистых изомеров одного типа, а не их смесей, как это часто бывает в реакциях химического синтеза.
Большинство микробиологических процессов сопровождается интенсив-ным выделением различных газов (CO2, H2, CH4 и др.), что часто приводит к обильному пенообразованию. Это является крайне нежелательным процесс-сом, так как чрезмерное вспенивание в ферментере ограничивает полезную емкость аппарата, нередко является причиной заражения среды посторонней микрофлорой, приводит к потерям культуральной жидкости, уходящей с пеной из аппарата. В большинстве случаев пеногашение осуществляют с помощью добавления химических пеногасителей - поверхностно-активных веществ природного и химического происхождения. Однако в последнее время все больше внимания обращается на механические пеногасители, использование которых исключает или резко сокращает введение химических пеногасителей, которые иногда бывают токсичными для микроорганизмов-продуцентов или являются ингибиторами ферментов.
Все механические пеногасители разделяются на два типа - роторные и циклонные. Принцип действия механических пеногасителей заключается в разрушении пузырьков воздуха или их дроблении при контакте с рабочим органом. Применяются как встроенные в аппарат, так и выносные механические пеногасители.
В случае роторных пеногасителей рабочим органом является обычно вращающийся диск с лопастями, выступами, прорезями либо пакет кони-ческих сепарационных тарелок.
Довольно широко используются пеногасители циклонного типа. Поступающая из аппарата воздушно-пенная струя двигается по винтовому каналу в верхней части циклона и после попадания в полую нижнию часть его закручивается как в вихре. В результате жидкость собирается в центе вихря и падает вниз, удаляясь через нижний патрубок, а воздух уходит через верх. Наилучший эффект в этом случае достигается обычно при их совместном использовании с химическими пеногасителями.
Основное искусство технолога при проведении управляемого культивирования состоит в умении создать наиболее «комфортные» условия для растущей культуры. Для этого необходимо прежде всего знать, каковы они - эти условия, или иными словами:
а) состояние процесса в пределах бесконечно малого промежутка времени;
б) реакцию микроорганизмов
на любые изменения
Однако непосредственно изучить состояние (“самочувствие”) клеток в промышленном аппарате не представляется возможным. Поэтому физиологическое состояние культуры продуцента оценивается обычно косвенно по различным кинетическим параметрам: скорости роста, потребления кислорода и различных субстратов, выделению углекислого газа и других продуктов метаболизма (в том числе и целевых), скорости закисления или защелачивания (по значению рН), тепловыделению и т.д.
Основными управляющими воздействиями для поддержания и корректировки режима культивирования являются режим аэрации и перемешивания, подача теплоносителя, регулировка величины рН, поддержание уровня пены, скорость дозирования субстрата.
Одной из основных проблем промышленной биотехнологии является отсутствие специализированных датчиков, поскольку общепромышленная номенклатура приборов и средств автоматизации, зачастую, не соответствует асептическим условиям процессов, не выдерживает многократной термической стерилизации, не может работать в сложных по составу ферментационных средах, включающих биомассу, пузыри воздуха, жировые компоненты, жидкие эмульсии и твердые частицы.
Дозирование субстратов. Как уже отмечалось насосы, трубопроводы и запорная арматура- сплошная “слабая” точка. В условиях асептических производств лучшими дозирующими насосами являются перистальтические или мембранные в которых рабочий орган взаимодействует с жидкостью через непроницаемую мембрану. Возможно дозирование и без насосов, с помощью дозировочных бачков. При этом давление в линиях должно на 1,5-2 атм превышать давление в ферментере.
Концентрация водородных ионов. Измерение рН без особых проблем осуществляют с помощью стеклянных электродов сравнения, которые хорошо выдерживают паровую стерилизацию. Иногда используют выносные системы с циркуляцией через них жидкости из ферментера.
Концентрация растворенных газов. Наибольшее распространение полу-чили амперометрические датчики. Они выдерживают 20-кратную стерили-зацию, не теряя чувствительности. Однако перед началом процесса ферментации они нуждаются в градуировке. Наиболее широко такие датчики используются на определение количества растворенного кислорода.
Концентрация CO2 в выхлопных газах. Этот параметр обычно измеряется по теплопроводности газов при помощи катарометра. Иногда пользуются инфракрасными анализаторами.
Температура. При биосинтезе температура может изменяться по опре- деленной программе, обеспечивающей максимальный выход продукта. Температуру можно контролировать ртутными термометрами, термопарами или металлическими термометрами сопротивления.
Давление. Для измерения этого параметра используют относительно простые диафрагмовые манометры, способные работать в условиях стерильности. Результирующий пневматический сигнал может быть реализован непосредственно на исполнительном устройстве или преобразован в электронный. Давление в ферментере обычно регулируется простым клапаном обратного давления.
В случае аварийного выключения компрессора, сопровождающегося падением избыточного давления в ферментере, необходимо загерметизировать аппарат для защиты от внешней посторонней микрофлоры. Для этого манометр в ферментере соединяется в единую схему с заслонками на линии ввода и вывода газа и в случае падения давления ниже допустимого эти заслонки автоматически закрываются.
Скорость подачи газа и жидкости. Предпочтение обычно отдается расходомерам переменного сечения - ротаметрам и диафрагмам. Положе-ние поплавка в ротаметре трансформируется в электрический сигнал, который передается на регулятор, управляющий вентилем на трубопроводе.
Уровень жидкости в ферментере. Интенсивное перемешивание и пенообразование не позволяют применять обычные методы измерения уровня, распространенные в химической технологии (смотровые окна, мерные трубки и тд.).
В ферментерах и биореакторах целесообразно применять весовой тип уровнемера, в котором датчики, фиксирующие массу аппарата, передают свой сигнал на прибор, отградуированный в единицах уровня.
Технология любого производственного процесса отрабатывается поэтапно: в лабораторных, пилотных (опытно-промышленных) и промышленных установках. Чаще встречаются аппараты с объемами ферменторной камеры: 0,5–100 л (лабораторные), 100-5000 л (пилотные) и 5000–1000000 л и более (промышленные). На каждом этапе увеличения масштаба ферментации (процесса) – масштабном переходе (масштабировании биотехнологического процесса) – решаются конкретные задачи отработки (налаживания) производства и его оптимизации.
Лабораторные ферментеры по устройству и форме напоминают промышленные и подразделяются на те же типы. Правда, в лабораторных условиях наиболее часто применяются аппараты с механическим перемешиванием. По принципу теплообмена и стерилизации они делятся на две категории. К первой относятся лишенные собственных систем теплообмена и стерилизации. Такие аппараты, по сути дела, представляют собой камеры для культивирования, помещаемые в водяные бани и стерилизуемые в автоклавах. Аппараты второй категории снабжены системами теплообмена и стерилизации, принципиально не отличающимися от таковых промышленных установок. С помощью лабораторных биореакторов решаются следующие задачи:
1) кинетические – определение скорости роста клеток, эффективность утилизации субстратов и образования целевого продукта;
2) некоторые массообменные – расчет коэффициентов массопередачи, скорость поступления в среду О2 и других газов, скорость освобождения от газообразных продуктов, образующихся при культивировании продуцентов (в первую очередь СО2);
3) определение коэффициентов реакций, связывающих утилизируемые субстраты и О2 с получаемыми целевым и побочными продуктами.
Пилотные установки используют для поиска (отсюда и название) наиболее целесообразных технологий и в общих чертах моделирования промышленного процесса. Поэтому на данном этапе стараются применять тот тип аппарата, который предполагается использовать в промышленном масштабе. Иными словами, отрабатываются все аспекты производства, вплоть до штатных вопросов.
При масштабных переходах следует постоянно иметь в виду, что даже при соблюдении одинаковых условий (среда, тип аппарата, температура и рН, скорость перемешивания) уровень и скорость синтеза целевого продукта могут существенно различаться - ситуация, очень четко прослеженная еще в 1940–1950 гг. при организации крупномасштабных производств антибиотиков.
Вследствие сказанного при переходе от лабораторных к пилотным, а затем от пилотных к промышленным установкам, приходится наряду с объемом изменятьи конструкцию, и подбирать режимы работы аппаратов.
Информация о работе Основы технологии, процессы и аппараты биотехнологических производств