Автор работы: Пользователь скрыл имя, 26 Ноября 2015 в 17:49, реферат
Эндокринная система – система желез, вырабатывающих гормоны, и выделяющих их непосредственно в кровь. Эти железы, называемые эндокринными или железами внутренней секреции, не имеют выводных протоков; они расположены в разных частях тела, но функционально тесно взаимосвязаны. Эндокринная система организма в целом поддерживает постоянство во внутренней среде, необходимое для нормального протекания физиологических процессов. Помимо этого, эндокринная система совместно с нервной и иммунной системами обеспечивают репродуктивную функцию, рост и развитие организма, образование, утилизацию и сохранение (“про запас” в виде гликогена или жировой клетчатки) энергии.
Несмотря на то, что в организме соматотропин активно стимулирует образование костной и хрящевой ткани, при введении данного гормона в изолированную культуру клеток заметного усиления роста последних обычно не наблюдается. В связи с этим возникло предположение, что стимуляция процессов роста, наблюдаемая в условиях целостного организма, не является результатом прямого действия этого гормона. Скорее всего под действием соматотропина происходит образование определенных посредников, влияние которых и приводит к анаболическому эффекту. Данные посредники получили название «соматомедины». К настоящему времени идентифицировано по крайней мере 4 различных соматомедина. Все они по своей химической структуре являются белками, образование которых происходит в печени под влиянием соматотропина. Показано, что нарушение синтеза соматомединов может приводить к задержке роста и физического развития, хотя концентрация соматотропина в плазме крови при этом может оставаться нормальной или даже повышенной. Влияние соматомединов на углеводный обмен соответствует эффектам, наблюдаемым при введении инсулина, поэтому их называют также «инсулиноподобные факторы роста».
Соматотропин обладает выраженным действием на углеводный. обмен. Под влиянием данного гормона увеличивается содержание глюкозы в плазме крови. Механизм данного эффекта имеет несколько объяснений. Прежде всего тормозится использование глюкозы на энергетические траты, поскольку, как указывалось выше, основным источником энергии в данных условиях являются жирные кислоты. Кроме того, гормон роста тормозит утилизацию глюкозы в тканях и снижает их чувствительность к действию инсулина. Под влиянием соматотропина увеличивается также активность фермента инсулиназы. Этот гормон обладает «диабетогенным» эффектом. Наблюдаемая при его введении гипергликемия является стимулом для выработки инсулина β-клетками поджелудочной железы. Выработка инсулина увеличивается также и за счет прямого стимулирующего влияния соматотропина на β-клетки. В результате может произойти истощение их секреторной функции, которое в сочетании с повышенной активностью инсулиназы приводит к развитию так называемого гипофизарного диабета.
Секреция гормона роста регулируется соматолиберином и соматостатином, которые вырабатываются в гипоталамусе. Отмечено усиление выработки соматотропина при стрессорных воздействиях, истощении запасов белка в организме. Увеличение секреции происходит также при сниженном содержании глюкозы и жирных кислот в плазме крови.
Пролактин. Эффекты этого гормона заключаются в следующем:
1) усиливаются
пролиферативные процессы в
2) усиливаются
процессы образования и
3) увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;
4) стимулируются образование желтого тела и выработка им прогестерона.
Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.
Гормоны нейрогипофиза.
Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:
1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под действием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолатеральной (обращенной к интерстицию) мембраны клеток эпителия почечных канальцев. Активация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной (обращенной в просвет почечного канальца) мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем включаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета почечных канальцев поступает в цитоплазму клеток эпителия канальцев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мембраны. В результате этого последняя становится непроницаемой для воды;
2) в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.
Основная часть АДГ синтезируется в супраоптическом ядре гипоталамуса (примерно 5/6 от общего количества), меньшая часть — в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови. Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздражение осморецепторов, что приводит к увеличению выработки гормона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь. Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15—20% количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, поступающей в гипоталамус от волюморецепторов, реагирующих на растяжение кровью и локализующихся в правом предсердии, и барорецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.
Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetes insipidus), основными проявлениями которого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). Наблюдается учащенное мочеиспускание (поллакиурия), в результате которого больной за сутки выделяет до 10—20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.
Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:
1) окситоцин
вызывает сокращение гладкой
мускулатуры матки. Установлено, что
при удалении гипофиза у
2) окситоцин
принимает участие в регуляции
процессов лактации. Он усиливает
сокращение миоэпителиальных
Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.
Эпифиз. ЭПИФИЗ (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название (греч. epiphysis – шишка, нарост).
Эпифиз развивается в эмбриогенезе из
свода (эпиталамуса) задней части (диэнцефалона)
переднего мозга. У низших позвоночных,
например у миног, могут развиваться две
аналогичных структуры. Одна, располагающаяся
с правой стороны мозга, носит название
пинеальной, а вторая, слева, парапинеальной
железы. Пинеальная железа присутствует
у всех позвоночных, за исключением крокодилов
и некоторых млекопитающих, например муравьедов
и броненосцев. Парапинеальная железа
в виде зрелой структуры имеется лишь
у отдельных групп позвоночных, таких,
как миноги, http://www.krugosvet.ru/
Функция. Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или «третьего глаза», они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи.
У земноводных пинеальная железа выполняет секреторную функцию: она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах (пигментных клетках). Мелатонин обнаружен также у птиц и млекопитающих; считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза.
У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов. Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз; эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина; в результате продукция последнего прекращается. Наоборот, в темноте мелатонин снова начинает вырабатываться.
Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина. Возникающие ритмические изменения его уровня – высокий ночью и низкий в течение дня – определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение.
У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и «зимние депрессии».
Строение. Эпифиз представляет собой вырост крыши III желудочка мозга. Он покрыт соединительнотканной капсулой, от которой внутрь отходят тяжи, разделяющие орган на доли. Размеры железы: до 12 мм в длину, 3-8 мм в ширину и 4 мм в толщину. Величина и вес меняются с возрастом. Масса эпифиза у взрослого человека составляет примерно 120 мг. Артерии шишковидной железы отходят от сосудистого сплетения III желудочка. Особенностью сосудов эпифиза является, отсутствие тесных контактов между эндотелиальными клетками, в силу чего гематоэнцефалический барьер в этом органе оказывается несостоятельным.
Большинство нервов эпифиза представлено волокнами клеток верхних шейных симпатических ганглиев.
Маленький вырост мозга, скрытый под большими полушариями, за свой внешний вид получил название шишковидной железы. Тело в виде сосновой шишки изображалось когда-то в тех местах папирусов, где говорилось о вхождении душ покойных в судный зал Осириса. Весьма архаичное значение шишки (а ведь "шишки" бывают важными) - символ вечной жизни, а также восстановления здоровья.
Физиология. Достоверных морфологических признаков, свидетельствующих о секреторной функции, нет. Однако дольчатость и тесные контакты паренхиматозных клеток с соединительнотканными и нейроглиальными элементами позволяют судить о железистой структуре эпифиза. Изучение ультраструктуры клеток также показывает способность пинеалоцитов к выделению секреторного продукта. Кроме того, в цитоплазме пинеалоцитов обнаружены плотные пузырьки (dens core vesicles) диаметром 30-50нм, свидетельствующие о секреторном процессе. В эндотелии капилляров эпифиза найдены норы диаметром 25 - 4нм. Капилляры с такой ультраструктурой обнаружены в гипофизе, щитовидной железе, паращитовидных и поджелудочной железах, т. е. в типичных органах внутренней секреции. По мнению Wolfe и А. М. Хелимского, поры в эндотелии капилляров являются ещё одним признаком, указывающим на его секреторную функцию. Исследования последних лет установили, что эпифиз - метаболически активный орган. В его ткани обнаруживаются биогенные амины и ферменты, катализирующие процессы синтеза и инактивации этих соединении. Установлено, что в эпифизе происходит интенсивный обмен липидов, белков, фосфора и нуклеиновых кислот. Изучены три физиологически активных вещества, обнаруженных в эпифизе:
1. серотонин,
2. мелатонин,
3. норадреналин.