Диагностическое оборудование

Автор работы: Пользователь скрыл имя, 19 Мая 2012 в 06:49, курсовая работа

Краткое описание

Раньше на всех автомобилях применялась контактная (батарейная) система зажигания, потом ей на смену пришла контактно транзисторная система зажигания. У нее вторичное напряжение было выше, и она работала стабильнее батарейной. Далее появилась бесконтактная система, которая была надежнее в эксплуатации, чем предыдущие системы и проще в обслуживании. Но в настоящее время применяют более совершенную систему управления двигателем, где все через датчики управляется бортовым компьютером. Это более точная система на данный момент времени. Теперь некоторые детали и аппараты системы уже не подлежат ремонту и восстановлению, а заменяются. Количество аппаратов проходящих техническое обслуживание (ТО) уменьшилось. С появлением системы управления двигателем процент неисправностей, приходящийся на систему зажигания, уменьшился в три раза.

Содержание

Введение 5
1 Классификация технологического и диагностического оборудования 6
2 Влияние обеспеченности авторемонтных предприятий средствами механизации на эффективность их деятельности 22
3 Оборудование для проведения контрольно-осмотровых работ 24
4 Диагностические платформы (комплексы) 30
Заключение 31
Список литературы 32

Вложенные файлы: 1 файл

Курсовой Левченко.doc

— 347.00 Кб (Скачать файл)

     4. Стенды для экспресс-диагностики ходовой части автомобиля 

     

     Рис. 3.3. Модули платформенного стенда динамической проверки автомобилей: а — с одним  тормозным модулем; б — с двумя  тормозными модулями

     

     Необходимость точной и объективной инструментальной диагностики ходовой части автомобиля (рис. 3.2) понятна всем. Надежные тормоза, синхронное срабатывание амортизаторов, отсутствие чрезмерного износа шин часто спасают не только автомобиль, но и жизнь его владельца. Тем не менее очень немногие автосервисы обладают необходимыми стендами или линиями инструментального контроля ходовой части. Причина этого банальна — такое оборудование очень дорого, сложно в установке, занимает площадь, которой всегда не хватает на СТОА и отнимает время клиента. Выходом из этой ситуации являются платформенные стенды динамической проверки автомобилей. Платформенный стенд динамической проверки автомобилей состоит из платформ тормозного модуля и модуля измерения схождения колес (рис. 3.3).

     Принцип платформенного стенда прост: диагностика  ходовой части проводится «на  ходу», в динамике, т. е. когда автомобиль «движется по дороге», когда на него действует не только сила тяжести, но и сила инерции, перераспределяющая нагрузки на переднюю или заднюю ось, на правый или левый амортизатор. Современный платформенный стенд диагностики ходовой части представляет собой две полосы плоских металлических платформ, уложенных на уровне пола, соединенных между собой кабелями и оснащенных дисплеем и компьютером. Толщина платформ составляет 40 мм, вместо приводов или других силовых установок используются тензометрические датчики. Дисплей и коммутационный блок крепятся на стене или потолочном перекрытии, а компьютер устанавливается в любом удобном для мастера месте.

     Приняв  автомобиль клиента, мастер приемки  проезжает по стенду, тормозит на нем  и проезжает к месту обслуживания. В течение 30 с компьютер обрабатывает полученные от тензо-метрических датчиков сигналы и выдает мастеру распечатку результатов диагностики.

     

     В основу работы тормозных модулей  положен принцип прямого измерения  тормозной силы с помощью силоизмерительных  датчиков, установленных под рельефными платформами. Датчики измеряют приложенную к поверхности платформы силу, возникающую при торможении испытуемого автомобиля. Тормозные усилия сканируются датчиками в течение всего времени торможения и обрабатываются компьютером, при этом значение максимальной тормозной силы в ньютонах высвечивается на дисплее стенда. Все текущие значения тормозной силы с интервалом в 0,15 с выдаются на принтер и показываются на распечатке. Если в память компьютера ввести вес автомобиля и нормы схождения колес, то программа рассчитает эффективность и устойчивость торможения, сравнит их с нормами ГОСТ (они заложены в компьютерную программу стенда) и на распечатке выдаст не только их значение, но даст заключение о соответствии полученных данных требованиям ГОСТ.

     Динамический  метод измерений позволяет легко  определять тормозные усилия даже на автомобилях с полным постоянным приводом колес.

     Величина  схождения колес на каждой оси  автомобиля определяется при проезде  испытуемого автомобиля по платформам модуля измерения схождения колес. Модуль состоит из двух установленных  параллельно платформ — подвижной и неподвижной. Поперечное отклонение подвижной платформы под действием силы, вызванной наличием угла схождения, измеряется встроенным датчиком и обрабатывается компьютером. Величина суммарного схождения колес на данной оси (в мм) высвечивается на дисплее и отображается в распечатке.

     Информация о динамических колебаниях автомобиля после его остановки на платформах тормозного модуля распечатывается на принтере в виде графиков и позволяет оценить эффективность работы подвески испытуемого автомобиля. Максимальные значения амплитуд колебаний выдаются в относительных единицах.

     Если  остальные детали подвески (рычаги, рессоры, опоры и т. д.) исправны, то полученные данные напрямую соответствуют  состоянию амортизаторов.

     

4 Диагностические платформы (комплексы) 

     Современный подход к оснащению участка диагностики — построение интегрированного технологического комплекса на основе общей платформы. Под диагностической платформой понимается набор основных приборов, который может расширяться и дополняться, придавая комплексу функциональные возможности, наиболее полно отвечающие текущим требованиям потребителя. Платформенный диагностический комплекс формируется по модульному принципу. В его составе выделяется базовое устройство, к которому в качестве периферийных компонентов подключаются различные модули. Модуль представляет собой прибор-приставку, обладающую функциями одного из диагностических инструментов: осциллографа, сканера, газоанализатора, мультиметра и др.

     Модули  максимально адаптированы для совместной работы в составе комплекса и  работают под управлением единого ПО с привлечением справочно-информационной системы. Это облегчает работу диагноста, позволяя оперативно подключать к исследованию необходимый прибор. Он управляет всеми имеющимися в распоряжении диагностическим средствами из одного места, используя единый интерфейс.

     В качестве примера можно привести платформенный диагностический  комплекс российского производства КАД-400.

     КАД-400 включает: мотор-тестер для бензиновых двигателей; дилерский сканер МТ-2Е для автомобилей ГАЗ, ВАЗ, УАЗ (МТ-2Е/9 с Евро-3+БОШ 7.9.7+ЯНВАРЬ-7.2); двухканальный цифровой осциллограф с памятью на 100 кадров; генератор эталонных сигналов; комплект персонального компьютера с устройством для чтения CD-ROM, пятью свободными СОМ-портами, сетевой картой, монитором, принтером и пультом дистанционного управления; передвижную стойку с тормозом на колесах.

 

     

     

Заключение 

     В распоряжении отечественных специалистов СТОА и ремонтных предприятий, а  также учащихся учреждений среднего профессионального образования  имеются довольно содержательные, но разрозненные источники информации по оборудованию и оснастке для ТО и ремонта автомобилей: каталоги фирм-производителей оборудования, каталоги специализированных выставок, Интернет и пр. Вся эта информация, как правило, носит рекламный характер и не всегда способствует объективной оценке оборудования с точки зрения его рационального и эффективного использования в условиях конкретного предприятия и мало освещает вопросы системного подхода к решению проблемы правильного комплектования оборудованием отдельных производственных участков и служб СТОА, что негативно влияет на технико-экономические показатели комплексной механизации работ по ТО и текущему ремонту автомобилей. Последнее, в конечном счете, определяет и экономическую эффективность работы самих предприятий.

     Появление новых технологий ТО и ремонта  автомобилей требует внедрения  принципиально нового оборудования, инструментов и средств контроля, что влечет за собой существенное переоснащение предприятий по ТО, ремонту и диагностике автомобилей. В связи с этим возникает необходимость совершенствования знаний персонала предприятий по обслуживанию современного оборудования и обеспечения необходимой информацией специалистов среднего звена с учетом внедрения в производство современной обрабатывающей, сборочной, контрольной и диагностической техники.

 

     

Список  литературы 

1. Власов Ю. А., Тищенко Н. Т. Основы проектирования и эксплуатации технологического борудования. Томск: Изд-во Томского ГАСУ, 2004.

2. Техническое  обслуживание и ремонт автомобилей:  учебник для студ. учреждений сред. проф. образования / В. М. Власов, С. В. Жанказиев, С. М. Круглов [и др.] / под ред. В. М. Власова. М.: Академия, 2006.

3. Виноградов В. М. Технологические процессы ремонта автомобилей: учеб. пособие для студ. учреждений сред. проф. образования. М.: Академия, 2008.

4. Виноградов В. М., Храмцова О. В. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: практикум для студ. учреждений сред. проф. образования. М.: Академия, 2009.

5. Виноградов В. М., Черепахин А. А., Шпунькин Н. Ф. Основы сварочного производства: учеб. пособие для студ. высш. учебных заведений. М.: Академия, 2008.

6. Капустин А. А. Автосервис и фирменное обслуживание. СПб.: Изд-во СПбГУСЭ, 2005.

7. Карагодин В. И., Митрохин Н. Н. Ремонт автомобилей и двигателей: учебник для студентов учреждений сред. проф. образования. М.: Академия, 2005.

8. Кудрин А. И. Основы расчета нестандартного оборудования для технического обслуживания и текущего ремонта автомобилей. Челябинск: Изд-во Ю-УрГУ, 2003.

9. Раевский М. А., Обметица В. П. Справочник по обслуживанию и ремонту автомобилей ВАЗ. Оборудование и инструмент. М.: Высш. шк., 1991.

10. Сарбаев В. И., Селиванов С. С, Коноплев В. Н. Механизация производственных процессов технического обслуживания и ремонта автомобилей. М.: Изд-во МГИУ, 2003.

11. Табель  гаражного и технологического  оборудования для автотранспортных предприятий различной мощности / С. А. Невский, В. Н. Назаров, М. Е. Егоров [и др.]. М.: Центроргтрудавтотранс, 2000.

12. Фастовцев Г. Ф. Автотехобслуживание. М.: Машинострение, 1985.

13. Шец С. П., Осипов А. В, Фролов А. В. Проектирование и эксплуатация технологического оборудования для технического сервиса автомобилей в условиях АТП. Брянск: Изд-во БГТУ, 2004.

14. Справочник электрогазосварщика и газорезчика: учеб. пособие / Г. Г. Чернышов, Г. В. Полевой, А. П. Выборное [и др.]; под ред. Г. Г. Чернышева. М.: Академия, 2007.

      


Информация о работе Диагностическое оборудование