Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор работы: Пользователь скрыл имя, 18 Сентября 2013 в 22:11, лабораторная работа

Краткое описание

При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая), о среднегодовой стоимости основных производственных фондов и о выпуске продукции за год.
В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.
Для проведения автоматизированного статистического анализа совокупности выборочные данные представлены в формате электронных таблиц процессора Excel в диапазоне ячеек B4:C35.

Вложенные файлы: 1 файл

O_T_Ch_E_T_po_statijstijke_varijant_21.doc

— 891.50 Кб (Скачать файл)


 

 

ФЕДЕРАЛЬНОЕ АГЕНТСТВО  ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО  ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ


ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ  ИНСТИТУТ

 

 

 

КАФЕДРА СТАТИСТИКИ

 

 

О Т  Ч Е Т

о результатах  выполнения

компьютерной  лабораторной работы №1

 

«Автоматизированный априорный анализ статистической совокупности в среде MS Excel»

 

Вариант № 21

 

 

 

 

 

УФА, 2010 г.

 

1. Постановка задачи

При проведении статистического  наблюдения за деятельностью предприятий  корпорации получены выборочные данные по 32-м предприятиям, выпускающим однородную продукцию  (выборка 10%-ная, механическая), о среднегодовой стоимости основных производственных фондов и  о выпуске продукции за год.

В проводимом статистическом исследовании обследованные предприятия  выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.

Для проведения автоматизированного  статистического анализа совокупности выборочные данные представлены в формате электронных таблиц процессора Excel в диапазоне ячеек B4:C35.

Исходные данные представлены в табл.1.

Номер предприятия

Среднегодовая стоимость  основных производственных фондов, млн.руб.

Выпуск продукции, млн. руб.

1

1232,00

1184,50

2

1450,50

1299,50

3

1496,50

1449,00

4

1577,00

1610,00

5

1025,00

805,00

6

1657,50

1380,00

7

1703,50

1863,00

8

1278,00

1265,00

9

1565,50

1483,50

10

1807,00

1851,50

12

1979,50

1955,00

13

1508,00

1541,00

14

1657,50

1679,00

15

1899,00

2035,50

16

2175,00

2185,00

17

1623,00

1472,00

18

1795,50

1748,00

19

1427,50

1092,50

20

1818,50

1495,00

21

2025,50

2012,50

22

1393,00

1138,50

23

1105,50

1069,50

24

1853,00

1713,50

25

1657,50

1495,00

26

1542,50

1414,50

27

1197,50

920,00

28

1611,50

1437,50

29

1864,50

1575,50

31

1772,50

1495,00

32

1301,00

1334,00


 

В процессе исследования совокупности необходимо решить ряд  задач.

I. Статистический анализ выборочной совокупности

  1. Выявить наличие среди исходных данных резко выделяющихся значений признаков («выбросов» данных) с целью исключения из выборки аномальных единиц наблюдения.
  2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую ( ), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( ), средние отклонения – линейное ( ) и квадратическое (σn), коэффициент вариации (Vσ), структурный коэффициент асимметрии  К.Пирсона (Asп).
  3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:

а) степень колеблемости значений признаков в совокупности;

б) степень однородности совокупности по изучаемым признакам;

в) устойчивость индивидуальных значений признаков;

г) количество попаданий индивидуальных значений признаков в диапазоны ( ), ( ), ( ).

  1. Дать сравнительную характеристику распределений единиц совокупности по двум изучаемым признакам на основе анализа:

а) вариации признаков;

б) количественной однородности единиц;

в) надежности (типичности) средних значений признаков;

г) симметричности распределений  в центральной части ряда.

  1. Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.

II. Статистический анализ  генеральной совокупности

  1. Рассчитать генеральную дисперсию , генеральное среднее квадратическое отклонение и ожидаемый размах вариации признаков RN. Сопоставить значения этих показателей для генеральной и выборочной дисперсий.
  2. Для изучаемых признаков рассчитать:

а) среднюю ошибку выборки;

б) предельные ошибки выборки  для уровней надежности P=0,683, P=0,954, P=0,997 и границы, в которых будут находиться средние значения признака генеральной совокупности при заданных уровнях надежности.

  1. Рассчитать коэффициенты асимметрии As и эксцесса Ek. На основе полученных оценок  сделать вывод об особенностях формы распределения единиц генеральной совокупности.

III. Экономическая интерпретация результатов статистического исследования предприятий

В этой части исследования необходимо ответить на ряд вопросов.

  1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?
  2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?
  3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?
  4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
  5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
  6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях показателя можно ожидать?

 

2. Рабочий файл  с результативными таблицами и графиками

 

 

 

 

 

 

3. Выводы по  результатам выполнения лабораторной  работы1

I. Статистический анализ выборочной совокупности

Задача 1. Указать количество аномальных единиц наблюдения со ссылкой на табл.2.

Аномальные единицы  наблюдения Таблица 2

Номер предприятия

Среднегодовая стоимость  основных производственных фондов, млн.руб.

Выпуск продукции, млн. руб.

11

680,00

1725,00

30

2175,00

575,00


 

Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах - табл.3 и табл.5. На основе этих таблиц формируется единая таблица (табл.8) значений выборочных показателей, перечисленных в условии Задачи 2.

 

Таблица 8

Описательные статистики выборочной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам

Признаки

Среднегодовая стоимость  основных производственных фондов

Выпуск продукции

Средняя арифметическая ( )

1600,00

1500,00

Мода (Мо)

1657,50

1495,00

Медиана (Ме)

1617,25

1489,00

Размах вариации(R)

1150,00

1380,00

Дисперсия( )

74791,78

106432

Среднее линейное отклонение ( )

220,00

251,30

Среднее квадратическое отклонение (σn)

273,50

326,20

Коэффициент вариации (Vσ)

17,09

21,74

Коэффициент асимметрии К.Пирсона (Asп)

-0,21

0,02


 

 

Задача 3.

3а). Степень колеблемости признака определяется по значению коэффициента вариации Vs  в соответствии с оценочной шкалой колеблемости признака.

Для признака Среднегодовая стоимость основных производственных фондов показатель Vs =17,09.

Для признака Выпуск продукции показатель Vs =21,74.

 

Вывод: коэффициенты вариации Vs =17,09%  и Vs =21,74% попадают в диапазон 0%<Vs≤40% - колеблемость признаков незначительная.

 

3б). Однородность совокупности по изучаемому признаку для нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V. Если его значение невелико (Vs<33%), то индивидуальные значения признака xi мало отличаются друг от друга, единицы наблюдения количественно однородны.

Для признака Среднегодовая стоимость основных производственных фондов показатель Vs =17,09.

Для признака Выпуск продукции показатель Vs =21,74.

 

Вывод: для признаков Среднегодовая стоимость основных производственных фондов и Выпуск продукции единицы наблюдения количественно однородны, распределение признаков близко к нормальному.

 

3в). Сопоставление средних отклонений  – квадратического s и линейного позволяет сделать вывод об устойчивости индивидуальных значений признака, т.е. об отсутствии среди них «аномальных» вариантов значений.

В условиях симметричного и нормального, а также близких к ним распределений  между показателями s и имеют место равенства s 1,25 , 0,8s, поэтому отношение показателей и s может служить индикатором устойчивости данных.

Если   >0,8, то значения признака неустойчивы, в них имеются «аномальные» выбросы. Следовательно, несмотря на визуальное обнаружение и исключение нетипичных единиц наблюдений при выполнении Задания 1, некоторые аномалии в первичных данных продолжают сохраняться. В этом случае их следует выявить (например, путем поиска значений, выходящих за границы ( )) и рассматривать в качестве возможных «кандидатов» на исключение из выборки.

Для признака Среднегодовая стоимость основных производственных фондов показатель = 0,8043

Для признака Выпуск продукции показатель =0,77.

Вывод: для признака Среднегодовая стоимость основных производственных фондов показатель =0,8043 0,8 значит значения признака неустойчивы, в них имеются «аномальные» выбросы. Выявим их : значения, выходящие за интервал  (1053,00;2147,00) являются «кандидатами» на исключение из выборки.

Для признака Выпуск продукции показатель = 0,77 0,8, значит нет аномалий.

«Кандидаты» на исключение из выборки: предприятие №5, стоимость основных производственных фондов 1025,00 и предприятие №16, стоимость основных производственных фондов 2175,00.

 

3г). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для установления процентного соотношения рассеяния значений xi по 3-м диапазонам формируется табл.9 (с конкретными числовыми значениями границ диапазонов).

Таблица 9

Распределение значений признака по диапазонам рассеяния признака относительно

 

Границы диапазонов

Количество значений xi, находящихся в диапазоне

Процентное соотношение рассеяния  значений xi по диапазонам, %

 

Первый признак

Второй признак

Первый признак

Второй признак

Первый признак

Второй признак

[1326,5.;1873,5.]

[1173,8;1826,2]

20

19

66,7

63,3

[1053,00.;2147,00]

[847,6;2152,00]

28

28

93,3

93,3

[779,5;2420,5]

[521,4;2478,6]

30

30

100

100


 

На основе данных табл.9 процентное соотношение рассеяния значений признака по трем диапазонам сопоставляется с рассеянием по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel