Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор работы: Пользователь скрыл имя, 18 Сентября 2013 в 22:11, лабораторная работа

Краткое описание

При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая), о среднегодовой стоимости основных производственных фондов и о выпуске продукции за год.
В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.
Для проведения автоматизированного статистического анализа совокупности выборочные данные представлены в формате электронных таблиц процессора Excel в диапазоне ячеек B4:C35.

Вложенные файлы: 1 файл

O_T_Ch_E_T_po_statijstijke_varijant_21.doc

— 891.50 Кб (Скачать файл)

68,3% значений располагаются в диапазоне ( ),

95,4% значений располагаются в диапазоне ( ),

99,7% значений располагаются в диапазоне ( ).

Если полученное в  табл. 9 процентное соотношение рассеяния хi по 3-м диапазонам незначительно расходится с правилом «3-х сигм», можно предположить, что изучаемое распределение признака близко к нормальному.

Расхождение с правилом «3-х сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( ) или значительно более 5% значения хi выходит за диапазон ( ). В этих случаях распределение нельзя считать близким к нормальному.

 

Вывод: полученное в табл. 9 процентное соотношение рассеяния хi по 3-м диапазонам незначительно расходится с правилом «3-х сигм», можно предположить, что изучаемое распределение признака близко к нормальному.

 

Задача 4. Для ответа на вопросы 4а) – 4г) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.

4а). Для сравнения колеблемости значений признаков, имеющих разные средние , используется коэффициент вариации Vs.

 

Вывод: так как Vs для первого признака меньше, чем Vs для второго признака, то колеблемость значений первого признака меньше колеблемости значений второго признака.

4б). Сравнение количественной однородности единиц.

Чем меньше значение коэффициента вариации Vs, тем более однородна совокупность.

 

Вывод: значение коэффициента вариации Vs<33%, значит совокупность количественно однородна.

4в). Сравнение надежности (типичности) средних значений признаков.

Чем более однородна  совокупность, тем надежнее среднее  значение признака

 

Вывод: т.к. единицы наблюдения количественно однородны , следовательно средняя арифметическая  величина является надежной характеристикой данной совокупности.

4г). Сравнение симметричности распределений в центральной части ряда.

В нормальных и близких  к нему распределениях основная масса  единиц (63,8%) располагается в центральной  части ряда, в диапазоне ( ). Для оценки асимметрии распределения в этом центральном диапазоне служит коэффициент К.Пирсона – Asп.

При правосторонней асимметрии Asп>0, при левосторонней – Asп<0. Если Asп=0, вариационный ряд симметричен.

 

Вывод: Асимметрия распределения признака Среднегодовая стоимость основных производственных фондов в центральной части ряда является левосторонней, так как Asп=-0,21<0. Асимметрия признака Выпуск продукции является правосторонней, так как Asп=0,02>0. .Сравнение абсолютных величин |Аsп| для обоих рядов показывает, что ряд распределения признака Среднегодовая стоимость основных производственных фондов более асимметричен, чем ряд распределения признака Выпуск продукции.

Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а гистограмма и кумулята – на рис.2.

Возможность отнесения распределения  признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируется количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

Заключение по п.1: : гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа   формы распределения используются  описательные параметры выборки  - показатели центра распределения ( , Mo, Me), вариации ( ), асимметрии в центральной части распределения (AsП). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное  распределение является симметричным, и для него выполняется соотношения:

=Mo=Me, Asп=0, Rn=6sn.

Нарушение этих соотношений  свидетельствует о наличии асимметрии распределения. Распределение с  небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.

 

Заключение по п.2

Т.к. = 1600, Mо = 1657,5, Ме = 1617,5, =-0,21, = 1150, 6σn = 6*273,5=1641

Следовательно, асимметрия незначительная, распределение можно отнести к нормальному типу.

3. В нормальном и близким к нему распределениях крайние варианты значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем серединные (лежащие в диапазоне ( )). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону.

Заключение  по п.3 . процент выхода значений признака за пределы диапазона ( ) – 6,7%, «хвосты» распределения соответствуют нормальному закону.

 

Вывод: Гистограмма является одновершинной (многовершинной), приблизительно симметричной (существенно асимметричной),“хвосты” распределения не очень длинны, т.к. 6,7% вариантов лежат за пределами интервала ( ), следовательно, распределение близко к нормальному.

 

 

II. Статистический анализ  генеральной совокупности

Задача 1. Рассчитанные генеральные показатели представлены в табл.10.

Таблица 10

Описательные статистики генеральной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам

Признаки

Среднегодовая стоимость  основных производственных фондов

Выпуск продукции

Стандартное отклонение

47,41

38,08

Дисперсия

2248,18

 

Асимметричность As

-0,15

0,04

Эксцесс Ek

-0,34

-0,21


 

Величина дисперсии генеральной совокупности может быть оценена непосредственно по выборочной дисперсии .

В математической статистике доказано, что при малом числе наблюдений (особенно при n 40-50) для вычисления генеральной дисперсии по выборочной дисперсии следует использовать формулу

.

- для среднегодовой стоимости  ОПФ

- для выпуска продукции

При достаточно больших n значение поправочного коэффициента близко к единице (при n=100 его значение равно 1,101, а при n=500 - 1,002 и т.д.). Поэтому при достаточно больших n можно приближено считать, что обе дисперсии совпадают:

.

Рассчитаем отношение для двух признаков:

Для первого признака = 0,97, для второго признака =0,97.

Вывод: Степень расхождения между признаками оценивается величиной 0,97, значит расхождение незначительно.

Для нормального распределения  справедливо равенство RN=6sN.

В условиях близости распределения  единиц генеральной совокупности к  нормальному это соотношение  используется для прогнозной оценки размаха вариации признака в генеральной  совокупности.

Ожидаемый размах вариации признаков RN:

- для первого признака RN = 6*278,16=1668,96,

- для второго признака RN  = 6*331,82=1990,92.

Величина расхождения между показателями RN и Rn:

- для первого признака |RN -Rn|= 1668,96-1150 = 518,96

- для второго признака |RN -Rn| = 1990,92-1380 = 610,92

 

Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.

Как правило, статистические характеристики выборочной и генеральной  совокупностей не совпадают, а отклоняются  на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность

= | - |

определяет ошибку репрезентативности для средней величины признака.

Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой)  выражает среднее квадратическое отклонение s выборочной средней от математического ожидания M[ ] генеральной средней .

Для изучаемых признаков  средние ошибки выборки  даны в табл. 3:

- для признака Среднегодовая стоимость основных производственных фондов

= 50,78,

- для признака Выпуск продукции

= 60,6

Предельная  ошибка выборки  определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1,  гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.

Для уровней надежности P=0,954; P=0,997; P=0,683 оценки предельных ошибок выборки даны в табл. 3, табл. 4а и табл. 4б.

Для генеральной средней  предельные значения и доверительные  интервалы определяются выражениями:

,

Предельные ошибки выборки  и ожидаемые границы для генеральных  средних представлены в табл. 11.

 

Таблица 11

Предельные ошибки выборки  и ожидаемые границы для генеральных  средних

Доверительная

вероятность

Р

Коэффициент

доверия

t

Предельные ошибки выборки

Ожидаемые границы для средних 

для первого

признака

для второго

признака

для первого

признака

для второго

признака

0,683

1

51,71

61,68

1548,29 1651,71

1437,32 1560,68

0,954

2

105,88

126,30

1494,12 1705,88

1372,70 1625,30

0,997

3

164,51

196,25

1435,49 1764,51

1302,75 1695,25


 

Задача 3 Значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.

Показатель  асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.

Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo, что означает преимущественное появление в распределении более высоких значений признака. (среднее значение больше серединного Me и модального Mo).

Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo).

Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:

|As|  0,25  - асимметрия незначительная;

0,25<|As| 0.5 - асимметрия заметная (умеренная);

|As|>0,5  - асимметрия существенная.

Вывод: Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная левосторонняя асимметрия.

Показатель  эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.

Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.

Если Ek>0, то вершина кривой распределения располагается выше  вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel