Изучение статистических совокупностей

Автор работы: Пользователь скрыл имя, 24 Октября 2012 в 09:05, реферат

Краткое описание

Изучение статистических совокупностей, состоящих из множеств единиц, связано с большими трудовыми и материальными затратами.
С давних пор представлялось заманчивым не изучать все единицы совокупности, а отобрать лишь некоторую часть, по которой можно было бы судить о свойствах всей совокупности в целом. Попытки такого рода делались еще в ХVII в.

Вложенные файлы: 1 файл

ваня статистика.doc

— 93.00 Кб (Скачать файл)

Введение

Изучение статистических совокупностей, состоящих из множеств единиц, связано с большими трудовыми  и материальными затратами.

С давних пор представлялось заманчивым не изучать все единицы  совокупности, а отобрать лишь некоторую часть, по которой можно было бы судить о свойствах всей совокупности в целом. Попытки такого рода делались еще в ХVII в.

Выборочный метод обследования, или как его часто называют выборка, применяется прежде всего в тех случаях, когда сплошное наблюдение вообще невозможно. Обследование может быть связано с уничтожением или порчей обследуемых единиц. Так, например, при контроле качества хлебобулочных изделий, консервов и т.д. изделие после контрольных операций становится непригодным для реализации, что делает сплошной контроль невозможным.

Невозможно сплошное обследование и в тех случаях, когда обследуемая совокупность очень велика, практически безгранична. Например, совокупность участков морского дна или совокупность колосьев пшеницы на поле.

Во всех случаях выборочный метод позволяет сберегать значительные количества труда и средств как на этапе сбора сведений, так и на этапе их обработки и анализа. Экономия же труда и средств, получаемая при замене сплошного наблюдения выборочным имеет немаловажное значение.

Все эти положительные качества привили к широкому применению метода выборочного наблюдения. В нынешних условиях организации производственной и торговой деятельности данный метод как способ проверки качества продукции применяется большинством предприятий и организаций, также ни одно предприятие системы Потребкооперации не обходится без выборочного метода наблюдения.

1. Понятие выборочного наблюдения

 

При сплошном наблюдении – множество всех единиц данной совокупности носит название генеральной совокупности. Средняя арифметическая какого-либо признака, вычисленная для всех единиц этой совокупности, носит название генеральной средней и обозначается символом х.

В результате обследования можно получить не только средние  величины, но и относительные. Допустим, удельный вес называется генеральной долей.

Приведенным понятиям генеральной совокупности, генеральной средней, генеральной доли при выборочном обследовании соответствуют понятия выборочной совокупности, выборочной средней, выборочной доли.

Выборочная  совокупность – это совокупность единиц, попавших в выборку. Средняя арифметическая, вычисленная на основе значений какого-либо признака у всех единиц выборочной совокупности, носит название выборочной средней и обозначается символом  х.

Относительная величина доли, полученная в результате выборочного наблюдения, носит название выборочной доли (w). Если, например, в результате обследования взятых на выборку 200 шт. какого-либо изделия,. 4 оказались негодными, то это означает, что выборочная доля брака равна 4/200, т.е. = 0,02.

В зависимости от конкретных условий для выборки единиц применяются различные приемы отбора:

  1. собственно случайный отбор - состоит в отборе случайно попавших единиц совокупности;
  2. механический отбор – когда все единицы наблюдаемой совокупности располагают в определенной последовательности (по номерам, по алфавиту и т.д.), единицы выбирают через определенный промежуток;
  3. гнездовой отбор – производится в том случае, если для изучения берут не отдельные единицы совокупности, а отдельные группы единиц или гнезда;
  4. типический отбор – состоит в том, что все единицы совокупности предварительно распределяют на группы по какому-либо типичному признаку, после чего из каждой типической группы отбирают единицы для обследования;
  5. комбинированный отбор – применяют сразу два вида отбора.

В экономико-статистических исследованиях используют следующие способы отбора единиц из генеральной совокупности:

  1. индивидуальный отбор – в выборку отбираются отдельные единицы;
  2. групповой отбор – в выборку попадаются качественно однородные группы или серии изучаемых явлений;
  3. комбинированный отбор – как комбинация индивидуального и группового отбора.

В статистике различают  также одноступенчатый и многоступенчатый способы отбора единиц в выборочную совокупность.

При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.

При многоступенчатой выборке производят отбор из генеральной совокупности отдельный групп, а из групп выбираются отдельные единицы. Так производится типичная выборка с механическим способом отбора единиц в выборочную совокупность.

Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В зависимости от способа отбора единиц различают:

  1. повторная выборка. При повторном отборе вероятность попадания каждой отдельной единицы в выборку остается постоянной, так как после отбора какой-то единицы, она снова возвращается в совокупность и снова может быть выбранной;
  2. бесповторная выборка. В этом случае каждая отобранная единица не возвращается обратно, и вероятность попадания отдельных единиц в выборку все время изменяется (для оставшихся единиц она возрастает).

2. Ошибки выборочного наблюдения

 

При любом наблюдении могут происходить ошибки при  регистрации единиц. В зависимости от объекта, субъекта и способа наблюдения эти ошибки могут возникнуть из-за сообщения ошибочных сведений объектом, неточной фиксации сообщаемых сведений субъектом наблюдения, неточного подсчета или измерения фиксируемых признаков при непосредственном наблюдении.

При несплошном наблюдении, в частности  при выборочном, кроме ошибок регистрации  возможны так называемые ошибки репрезентативности (представительности), которые возникают в связи с тем, что отобранная для обследования часть совокупности имеет по изучаемому признаку иную структуру, чем совокупность в целом. При выборочном обследовании их источником является нарушение принципа случайности отбора, его тенденциозность. Случайные же ошибки возможны и при совершенно правильно организованном отборе за счет того, что случайно могут отказаться отобранными единицы с характеристиками, в среднем отличными от всей совокупности. Таким образом, ошибка наблюдения (eнв) является при выборочном наблюдении суммой ошибки регистрации (eрв) и ошибки репрезентативности (eпв), а при сплошном наблюдении ошибка наблюдения (eнс) равна ошибке регистрации (eрс). (Приложение №1)

Пусть нас интересует некоторый признак х. Его распределение в генеральной совокупности характеризуется частотами F, из которых вытекают генеральная средняя х, генеральная дисперсия D, генеральное среднее квадратическое отклонение s, генеральные доли (относительные частоты и частости) р. Цель выборочного наблюдения заключается в том, чтобы, отобрав из генеральной совокупности некоторое число n единиц, обследовать их и на этой основе оценить неизвестные нам генеральные характеристики. Совокупность отобранных единиц носит название выборочной совокупности, или просто выборки, и все ее характеристики тоже называются выборочными. Вариация признака х в выборочной совокупности характеризуется частотами f, из которых вытекают выборочная средняя х, выборочная дисперсия Dв, выборочное среднее квадратическое отклонение sв = ÖDв, выборочные доли w = f/åf. На основе теорем закона больших чисел можно утверждать, что при достаточно большом объеме выборки выборочные характеристики мало отличаются от генеральных, т.е. если n достаточно велико, то х » х; w » р; Dв » D.

Ошибка выборки – это абсолютная величина в разности между соответствующими выборочной и генеральной характеристиками:

|х - х| - ошибка для средней или |w - р| - ошибка для доли.

Как и сама выборочная характеристика, ошибка выборки является случайной величиной. Пользуясь теоремой Ляпунова, можно указать вероятность (Р) того, что ошибка выборки не превысит некоторую заданную величину D, т.е. что |х - х| £ D или |w - р| £ D. Вероятность р при этом называют доверительной вероятностью, а пределы, в которых с этой вероятностью может находится генеральная характеристика, называют доверительными пределами (или границами) этой характеристики. Доверительные пределы генеральной средней или доли определяются на основе неравенств |х – х| £ D или |w - р| £ D, из которых следует, что х - D £ х £ х + D или w - D £ р £ w + D.

Так, если при определении  среднего числа дней, отработанных колхозниками за год, ошибка выборки с доверительной вероятностью р = 0,99 оказалось равной двум дням, то пределы, в которых может находиться генеральная средняя, определяется следующим образом 260 – 2 £ х £ 260 + 2 или 258 £ х £ 262, т.е. с вероятностью, равной 0,99 утверждать, что среднее число отработанных за год колхозниками района дней находится в пределах от 258 до 262.

Возможные расхождения между характеристиками выборочной и генеральной совокупности измеряются средней ошибкой выборки m. В математической статистике доказывается, что значения средней ошибки выборки определяются по формуле:

           s02

m =   ------

     Ö      n

На  практике для определения  средней ошибки выборки обычно используются дисперсии выборочной совокупности s2.

                  n

 s02  = s2 (------)

                n - 1

Если n достаточно велико, то отношение n/n-1 близко к единице.

При замене генеральной дисперсии s02 дисперсией выборочной s2 формула расчета средней ошибки записывается так:

          s2

m =   ----

     Ö   n

Следует иметь в виду, что эта  формула применяется для определения средней ошибки выборки лишь при так называемом повторном отборе.

Поскольку при бесповторном отборе численность генеральной совокупности в ходе выборки сокращается, то в формулу для расчета средней выборки включают дополнительный множитель 1 – n/N. Формула средней ошибки выборки принимает следующий вид:

           s2          n

m =   ----- (1 - -----).

     Ö   n            N

Для  практики выборочных обследований важно, что средняя  ошибка выборки применяется для  установления предела отклонений характеристик выборки из соответствующих показателей генеральной совокупности небезотносительно. Лишь с определенной степенью вероятности можно утверждать, что эти отклонения не превысят величины t × m, которая в статистике называется предельной ошибкой выборки.

Предельная ошибка выборки D связана со средней ошибкой выборки m отношением: D = t × m

При этом t как коэффициент кратности средней ошибки выборки зависит от вероятности, с которой гарантируется величина предельной ошибки выборки.

Если в формулу подставить конкретное содержание m, то расчет предельной ошибки выборки при бесповторном отборе можно записать следующими алгоритмами:

а) доля альтернативного  признака:

              w (1 - w)          n

Dw = t   ------------ (1 - -----)

         Ö         n                N

б) средняя величина количественного  признака:

              sх2          n

Dх = t   ------ (1 - ----)

         Ö   n             N

При этом следует иметь  в виду, что при сравнительно небольшом  проценте единиц, взятых в выборку (до 5 %), множитель (1 – n/N) близок к единице. Поэтому на практике при расчете величины предельной ошибки выборки (при бесповторном отборе) множитель (1 – n/N) можно опустить, и расчет производится по формулам повторного отбора, т.е.:

           

 

              w (1 - w)

Dw = t   ------------

               Ö    n       

 

              

              s2       

Dх = t   --------

             Ö   n              

3. Определение необходимого объема  выборки

 

При организации выборочного  обследования следует иметь в  виду, что размер ошибки выборки  прежде всего зависит от численности  выборочной совокупности n. Средняя ошибка выборки обратно пропорциональна Ö n, т.е. при увеличении, например, численности выборки в четыре раза ее ошибки уменьшатся вдвое.

Пример, отбираем из генеральной  совокупности не 5 %, а, например, 20 % готовой продукции. Численность выборки n будет равна 400 шт. Тогда при условии, что sw = 15,4 г, размер ошибки для выборочной средней при повторном отборе составит:  

           15,42

mх =   -------- = ± 0,17 г.

          400

Увеличивая численность  выборки, можно довести ее ошибку до сколь угодно малых размеров. Можно представить, что при доведении n до размеров N ошибка выборки m становится равной нулю. Но так как при проведении выборочных обследований в торговле определение характеристик выборки в ряде случаев сопровождается разрушением обследуемых образцов, то нормы отбора проб в выборку должны быть минимальными. Это сообразуется с основным преимуществом несплошного наблюдения: получением необходимой информации с минимальными затратами времени и труда. Поэтому вопрос об оптимальной численности выборки имеет важное практическое значение. Повышение процента выборки, как правило, ведет к увеличению объема исследовательской работы, вызывает дополнительные затраты труда и материальных средств. Но, с другой стороны, если в выборку взять недостаточное количество проб (образцов), то результаты исследования могут содержать большие погрешности. Все это необходимо учитывать при организации выборочного обследования.

Информация о работе Изучение статистических совокупностей