Размах вариации. Среднее линейное отклонение. Дисперсия. Среднее квадратическое отклонение

Автор работы: Пользователь скрыл имя, 26 Мая 2012 в 13:57, контрольная работа

Краткое описание

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.
Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности. Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость. Изучение вариации в статистической практике позволяет установить зависимость между изменением, которое происходит в исследуемом признаке, и теми факторами, которые вызывают данное изменение.

Вложенные файлы: 1 файл

Контрольная работа по статистике.doc

— 115.50 Кб (Скачать файл)
 

     Вариант 4

     1. Размах вариации. Среднее линейное отклонение. Дисперсия. Среднее квадратическое отклонение.

     Конкретные  условия, в которых находится  каждый из изучаемых объектов, а  также особенности их собственного развития (социальные, экономические  и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

     Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности. Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость. Изучение вариации в статистической практике позволяет установить зависимость между изменением, которое происходит в исследуемом признаке, и теми факторами, которые вызывают данное изменение.

     Для измерения вариации признака используют как абсолютные, так и относительные показатели.

     К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.

     К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.

     Размах  вариации R. Это самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

     

     Размах  вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

     Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение.

     Среднее линейное отклонение d, которое вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности. Эта величина определяется как средняя арифметическая из абсолютных значений отклонений от средней. Так как сумма отклонений значений признака от средней величины равна нулю, то все отклонения берутся по модулю.

     Формула среднего линейного отклонения (простая):

     Формула среднего линейного отклонения (взвешенная):

     Показатель  среднего линейного отклонения нашел  широкое применение на практике. С  его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования.

     Однако  при использовании показателя среднего линейного отклонения возникают  определенные неудобства, связанные  с тем, что приходится иметь дело не только с положительными, но и с отрицательными величинами, что побудило искать другие способы оценки вариации, чтобы иметь дело только с положительными величинами. Таким способом стало возведение всех отклонений во вторую степень. Обобщающие показатели, найденные с использованием вторых степеней отклонений, получили очень широкое распространение. К таким показателям относятся среднее квадратическое отклонение   и среднее квадратическое отклонение в квадрате , которое называют дисперсией.

     Среднее квадратическое отклонение :

     Средняя квадратическая простая

     

     Средняя квадратическая взвешенная

     

     Дисперсия есть не что иное, как средний квадрат отклонений индивидуальных значений признака от его средней величины.

     Формулы дисперсии взвешенной   и простой :

     

     Расчет дисперсии можно упростить. Для этого используется способ отсчета от условного нуля (способ моментов), если имеют место равные интервалы в вариационном ряду.

     Кроме показателей вариации, выраженных в  абсолютных величинах, в статистическом исследовании используются показатели вариации (V), выраженные в относительных величинах, особенно для целей сравнения колеблемости различных признаков одной и той же совокупности или для сравнения колеблемости одного и того же признака в нескольких совокупностях.

     Данные  показатели рассчитываются как отношение размаха вариации к средней величине признака (коэффициент осцилляции), отношение среднего линейного отклонения к средней величине признака (линейный коэффициент вариации), отношение среднего квадратического отклонения к средней величине признака (коэффициент вариации) и, как правило, выражаются в процентах.

     Формулы расчета относительных показателей  вариации:

     

     где VR - коэффициент осцилляции; Va- линейный коэффициент вариации;  VQ- коэффициент вариации.

     Из  приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака.

     В статистической практике наиболее часто  применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному).

     В статистическом исследовании очень  часто бывает необходимо не только изучить вариации признака по всей совокупности, но и проследить количественные изменения признака по однородным группам совокупности, а также и между группами. Следовательно, помимо общей средней для всей совокупности необходимо просчитывать и частные средние величины по отдельным группам.

     Различают три вида дисперсий:

    • общая;
    • средняя внутригрупповая;
    • межгрупповая.

     Общая дисперсия ( ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле:

     

где - общая средняя арифметическая всей исследуемой совокупности.

     Средняя внутригрупповая  дисперсия ( ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( ), затем рассчитывается средняя внутригрупповая дисперсия :

     

где ni - число единиц в группе

     Межгрупповая  дисперсия (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле:

     

где - средняя величина по отдельной группе.

     Все три вида дисперсии связаны между  собой: общая дисперсия равна  сумме средней внутригрупповой  дисперсии и межгрупповой дисперсии:

     

     Данное  соотношение отражает закон, который  называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки.

     2. Виды статистических  таблиц. Основные  правила их составления  и оформления. Виды  статистических графиков. Порядок их построения.

     Виды  статистических таблиц. Особое место в статистике занимает табличный метод, который имеет универсальное значение. С помощью статистических таблиц осуществляется представление данных результатов статистического наблюдения, сводки и группировки. Поэтому обычно статистическая таблица определяется как форма компактного наглядного представления статистических данных.

     Анализ  таблиц позволяет решать многие задачи при изучении изменения явлений  во времени, структуры явлений и  их взаимосвязей. Таким образом, статистические таблицы выполняют роль универсального средства рационального представления, обобщения и анализа статистической информации.

     Внешне  статистическая таблица представляет собой систему построенных особым образом горизонтальных строк и  вертикальных столбцов, имеющих общий заголовок, заглавия граф и строк, на пересечении которых и записываются статистические данные.

     Каждая  цифра в статистических таблицах — это конкретный показатель, характеризующий  размеры или уровни, динамику, структуру  или взаимосвязи явлений в конкретных условиях места и времени, то есть определенная количественно-качественная характеристика изучаемого явления.

     Если  таблица не заполнена цифрами, то есть имеет только общий заголовок, заглавия граф и строк, то мы имеем  макет статистической таблицы. Именно с его разработки и начинается процесс составления статистических таблиц.

     Основными элементами статистической таблицы  являются подлежащее и сказуемое таблицы.

     Подлежащее  таблицы — это объект статистического  изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом. 

     Сказуемое таблицы — это статистические показатели, характеризующие изучаемый объект.

     Подлежащее  и показатели сказуемого таблицы  должны быть определены очень точно. Как правило подлежащее располагается в левой части таблицы и составляет содержание строк, а сказуемое — в правой части таблицы и составляет содержание граф.

     Обычно  при расположении показателей сказуемого в таблице придерживаются следующего правила: сначала приводят абсолютные показатели, характеризующие объем изучаемой совокупности, затем — расчетные относительные показатели, отражающие структуру, динамику и взаимосвязи между показателями.

     По  характеру разработки показателей подлежащего, различают три вида статистических таблиц:

    • простые
    • групповые
    • комбинационные

     Простые таблицы содержат перечень отдельных единиц, входящих в состав совокупности анализируемого экономического явления. Простые таблицы имеют в подлежащем перечень единиц совокупности, времени или территорий.

     В групповых таблицах цифровая информация в разрезе отдельных составных частей исследуемой совокупности данных объединяется в определенные группы в соответствии с каким-либо признаком. Групповыми называются таблицы, имеющие в подлежащем группировку единиц совокупности по одному признаку.

     Комбинированные таблицы содержат отдельные группы и подгруппы, на которые подразделяются экономические показатели, характеризующие изучаемое экономическое явление. Комбинационные таблицы имеют в подлежащем группировку единиц совокупности по двум или более признакам.

     При этом такое подразделение осуществляется не по одному, а по нескольким признакам. В групповых таблицах осуществляется простая группировка показателей, а в комбинированных — комбинированная группировка. Простые таблицы вообще не содержат никакой группировки показателей. Последний вид таблиц содержит лишь не сгруппированный набор сведений об анализируемом экономическом явлении.

     По  характеру разработки показателей сказуемого различают:

Информация о работе Размах вариации. Среднее линейное отклонение. Дисперсия. Среднее квадратическое отклонение