Статистическое изучение динамики социально-экономических явлений

Автор работы: Пользователь скрыл имя, 16 Сентября 2012 в 15:18, реферат

Краткое описание

Процесс развития, движения социально-экономических явле¬ний во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологичес¬кие, временные), которые представляют собой ряды изменяющих¬ся во времени значений статистического показателя, расположен¬ных в хронологическом порядке. В нем процесс экономического развития изображается в виде совокупности дискретных значений , отражающих изменение параметров экономической системы во времени.

Вложенные файлы: 1 файл

Динамика.doc

— 292.50 Кб (Скачать файл)


СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ

ПОНЯТИЕ И КЛАССИФИКАЦИЯ РЯДОВ ДИНАМИКИ

Процесс развития, движения социально-экономических явле­ний во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологичес­кие, временные), которые представляют собой ряды изменяющих­ся во времени значений статистического показателя, расположен­ных в хронологическом порядке. В нем процесс экономического развития изображается в виде совокупности дискретных значений , отражающих изменение параметров экономической системы во времени.

Составными элементами ряда динамики являются показатели уровней ряда и периоды времени (годы, кварталы, месяцы, сут­ки) или моменты (даты) времени.

Уровни ряда обычно обозначаются через «у», моменты или периоды времени, к которым относятся уровни, - через «t».

Существуют различные виды рядов динамики. Их можно классифицировать по следующим признакам.

1. В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относитель­ных и средних величин.

 

2. В зависимости от того, как выражают уровни ряда со­стояние явления на определенные моменты времени (на начало месяца, квартала, года и т. п.) или его величину за определенные интервалы времени (например, за сутки, ме­сяц, год и т. п.), различают соответственно моментные и интервальные ряды динамики.

Уровни интервального ряда динамики абсолютных величин характеризуют собой суммарный итог какого-либо явления за определенный отрезок времени. Они зависят от продолжитель­ности этого периода времени, и поэтому их можно суммировать как не содержащие повторного счета.

Отдельные же уровни моментного ряда динамики абсолют­ных величин содержат элементы повторного счета, например, число вкладов населения, учитываемых за январь, существует и в настоящее время, являясь единицами совокупности и в любом другом месяце.

3. В зависимости от расстояния между уровнями ряды динамики подразделяются на ряды динамики с равноот­стоящими уровнями и неравноотстоящими уровнями во времени. Ряды динамики следующих друг за другом перио­дов или следующих через определенные промежутки дат на­зываются равноотстоящими (пример о числе вкладов в Сбербанк РФ за январь — июнь 1997 г.). Если же в рядах да­ются прерывающиеся периоды или неравномерные промежут­ки между датами, то ряды называются неравноотстоящими (пример в табл. 1).

4. В зависимости от наличия основной тенденции изучае­мого процесса ряды динамики подразделяются на стационар­ные и нестационарные.

Если математическое ожидание значения признака и диспер­сия (основные характеристики случайного процесса) постоянны, не зависят от времени, то процесс считается стационарным и ряды динамики также называются стационарными. Экономические процессы во времени обычно не являются стационарными, так как содержат основную тенденцию развития, но их можно пре­образовать в стационарные путем исключения тенденций.

СОПОСТАВИМОСТЬ УРОВНЕЙ И СМЫКАНИЕ РЯДОВ ДИНАМИКИ

Основным условием правильного построения ряда динами­ки является сопоставимость всех входящих в него уровней. Дан­ное условие решается либо в процессе сбора и обработки дан­ных, либо путем их пересчета.

   Основные причины несопоставимости уровней ряда динамики.

Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения или единиц счета. Нельзя, напри­мер, сравнивать и анализировать цифры о производстве тканей, если за одни годы цифры даны в погонных метрах, а за другие -в квадратных метрах.

               Одним из приемов достижения сопоставимости является «смыкание рядов динамики». Под смыканием пони­мают объединение в один ряд (более длинный) двух или несколь­ких рядов динамики, уровни которых исчислены по разной методологии или разным территориальным границам. Для осу­ществления смыкания необходимо, чтобы для одного из

перио­дов (переходного) имелись данные, исчисленные по разной ме­тодологии

              Динамика объема продукции

 

 

1991

1992

1993

1994

1995

1996

1997

1998

Объем продукции,

млн руб.:

по старой методике

по новой методике

 

 

19,1

 

 

19,7

 

 

20,0

-

 

 

21,2

22,8

 

 

23,6

 

 

24,5

 

 

-

26,2

 

 

28,1

Сомкнутый (сопоста­

вимый) ряд абсолют­

ных величин, млн руб.

 

 

21,0

 

 

21,7

 

 

22,0

 

 

22,8

 

 

23,6

 

 

24,5

 

 

26,2

 

 

28,1

Сопоставимый ряд

относительных

величин, в % к 1994 г.

 

 

90,1

 

 

92,9

 

 

94,3

 

 

100,0

 

 

103,5

 

 

107,5

 

 

114,9

 

 

123,2

 

 

Для этого на основе данных об объеме продукции по  новой и старой методике находим соотношение между ними: 22,8 : 21,2 = 1,1. Умножая на полученный коэффициент данные, приводим их таким образом в сопоставимый вид с последующи­ми уровнями.

              Другой способ смыкания рядов динамики заключается в том, что уровни года, в котором произошли изменения , как до изменений, так и после изменений (в старой и новой методике, т. е. 21,2 и 22,8) принимаются за 100%, а остальные пересчитываются в процентах по отношению к этим уровням соответственно (в старых ценах - по отношению к 21,2, в новых ценах - к 22,8).

Показатели анализа ряда динамики

Анализ интенсивности изменения во времени осуществляет­ся с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процен­та прироста.

Система средних показателей включает средний уровень ря­да, средний абсолютный прирост, средний темп роста, средний темп прироста.

Показатели анализа динамики могут вычисляться на посто­янной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным.

              Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базиснЫм уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики, либо уровень, с которого начи­нается какой-то новый этап развития явления. Исчисляемые  при этом показатели называются базисными

Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда Cрaвнивaeтся с предыдущим. Вычисленные таким образом показатели анализа дина­мики называются цепными.                    

Важнейшим статистическим показателем анализа динамики яв­ляется абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за оп­ределенный промежуток времени. Абсолютный прирост с пере­менной базой называют скоростью роста.

Абсолютный прирост            Абсолютный прирост (цепной):                       (базисный):

                           
где уi — уровень сравниваемого периода;

    уi-1 — уровень предшествующего периода;

  у0 — уровень базисного периода.

Цепные и базисные абсолютные приросты связаны между собой- сумма последовательных цепных абсолютных приростов равна базисному, т. е. общему приросту за весь промежуток вре­мени ().

Для оценки интенсивности, т. е. относительного изменения уровня динамического ряда за какой-либо период времени ис­числяют темпы роста (снижения).                  

Интенсивность изменения уровня оценивается отношением

отчетного уровня к базисному. Показатель интенсивности изменения уровня ряда, выраженный в долях единицы, называется коэффициентом роста, а в процентах - темпом роста. Эти показатели интенсивности из­менения отличаются только единицами измерения.

Коэффициент роста (снижения) показывает, во сколько раз сравниваемый уровень больше уровня, с которым произ­водится сравнение (если этот коэффициент больше единицы) или какую часть уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы). Темп роста всегда представляет собой положительное число.

Коэффициент роста:        Коэффициент роста:

(цепной)                      (базисный)

           

Темп роста (цепной):        Темп роста (базисный):

      

Тр = Kр*100.

Между цепными и базисными коэффициентами роста суще­ствует взаимосвязь (если базисные коэффициенты исчислены по отношению к начальному уровню ряда динамики): произведе­ние последовательных цепных коэффициентов роста равно базис­ному коэффициенту роста за весь период (П Кцр = Кбр), а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.

Относительную оценку скорости измерения уровня ряда в еди­ницу времени дают показатели темпа прироста (сокращения).

Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного при­роста к абсолютному уровню, принятому за базу сравнения.

Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах и долях единицы (коэффициенты прироста).

Темп прироста (цепной):  

 

 

 

    Темп прироста (базисный):

                                 

Темп прироста (сокращения) можно получить и из темпа роста, выраженного в процентах, если из него вычесть 100%.

Коэффициент прироста получается вычитанием единицы из ко­эффициента роста:

                         Тпр=Тр-100                     Кпр=Кр-1

 

Сравнение абсолютного прироста и темпа прироста за одни и те же периоды времени показывает, что при снижении (замедле­нии) темпов прироста абсолютный прирост не всегда уменьша­ется, иногда он может возрастать. Поэтому, чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называют абсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за тот же период времени, %:

Абсолютное значение одного процента прироста равно сотой части предыдущего (или базисного) уровня. Оно показывает, какое абсолютное значение скрывается за относительным пока­зателем — одним процентом прироста.

В тех случаях, когда сравнение производится с отдалением периода времени, принятого за базу сравнения, рассчитывают так называемые пункты роста, которые представляют собой разность базисных темпов роста, %, двух смежных периодов.

В отличие от темпов прироста, которые нельзя ни суммиро­вать, ни перемножать, пункты роста можно суммировать, в ре­зультате получаем темп прироста соответствующего периода по сравнению с базисным.

Для обобщающей характеристики динамики исследуемого явления определяют средние показатели: средние уровни ряда и средние показатели изменения уровней ряда.

              Средний уровень ряда характеризует обобщённую вели­чину абсолютных уровней. Он рассчитывается по средней хро­нологической, т. е. по средней исчисленной из значений, изме­няющихся во времени.

Методы расчета среднего уровня интервального и моментного рядов динамики различны.

Для интервальных рядов динамики из абсолютных уровней средний уровень за период времени определяется по формуле средней арифметической:

•  при равных интервалах применяется средняя арифметиче­ская простая:

где у - абсолютные уровни ряда; n -число уровней ряда.

•   при неравных интервалах — средняя арифметическая взве­шенная:

где у1,...,yn — уровни ряда динамики, сохраняющиеся без изме­нения в течение промежутка времени t,

t1,..., tn — веса, длительность интервалов времени (дней, ме­сяцев) между смежными датами.

Средний уровень моментного ряда динамики с равностоящими уровнями определяется по формуле средней хронологической мо­ментного ряда:

 

где у1,..., yп ~ уровни периода, за который делается расчет;

п — число уровней;

п - 1 — длительность периода времени.

Средний уровень моментных рядов с неравностоящими уровнями определяется по формуле средней хронологической взвешенной:

где уi ,yn - уровни рядов динамики;

ti — длительность интервала времени между смежными уровнями.

   .

Обобщающий показатель скорости изменения уровней во времени - средний абсолютный прирост (убыль), представляющий собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. По цепным данным об абсолютных приростах за ряд лет можно рассчитать средний абсолютный при­рост как среднюю арифметическую простую:

Информация о работе Статистическое изучение динамики социально-экономических явлений