Шпаргалка по "Математической статистике"

Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 12:40, шпаргалка

Краткое описание

Основные понятия математической статистики (переменная, признак, уровень, показатель, эмпирические данные, измерительные шкалы).

Признаки и переменные - это измеряемые психологические явления. Такими явлениями могут быть время решения задачи, количество допущенных ошибок, уровень тревожности, показатель интеллектуальной лабильности, интенсивность агрессивных реакций, угол поворота корпуса в беседе, показатель социометрического статуса и множество других переменных.
Понятия признака и переменной могут использоваться как взаимозаменяемые

Вложенные файлы: 1 файл

шпоры математические основы псих..doc

— 1.59 Мб (Скачать файл)

 

 

 

  1. Меры разброса вариант.

Меры разброса (изменчивости) – это статистические показатели, характеризующие различия между отдельными значениями выборки. Они позволяют судить о степени однородности полученного множества, его компактности, а косвенно и о надежности полученных данных и вытекающих из них результатов. Наиболее используемые в психологических исследованиях показатели: среднее отклонение, дисперсия, стандартное отклонение.

Размах (Р) – это интервал между максимальным и минимальным значениями признака. Определяется легко и быстро, но чувствителен к случайностям, особенно при малом числе данных.

Среднее отклонение (МД) – это среднеарифметическое разницы (по абсолютной величине) между каждым значением в выборке и ее средним.

где d = |Х – М |, М – среднее выборки, X – конкретное значение, N – число значений.

Множество всех конкретных отклонений от среднего характеризует изменчивость данных, но если не взять их по абсолютной величине, то их сумма будет равна нулю и мы не получим информации об их изменчивости. Среднее отклонение показывает степень скученности данных вокруг выборочного среднего. Кстати, иногда при определении этой характеристики выборки вместо среднего (М) берут иные меры центральной тенденции – моду или медиану.

Дисперсия (D) характеризует отклонения от средней величины в данной выборке. Вычисление дисперсии позляет избежать нулевой суммы конкретных разниц (d = Х – М) не через их абсолютные величины, а через их возведение в квадрат:

 

где d = |Х – М|, М – среднее выборки, X – конкретное значение, N – число значений.

Стандартное отклонение. Из-за возведения в квадрат отдельных отклонений d при вычислении дисперсии полученная величина оказывается далекой от первоначальных отклонений и потому не дает о них наглядного представления. Чтобы этого избежать и получить характеристику, сопоставимую со средним отклонением, проделывают обратную математическую операцию – из дисперсии извлекают квадратный корень. Его положительное значение и принимается за меру изменчивости, именуемую среднеквадратическим, или стандартным, отклонением:

где d = |Х– М|, М – среднее выборки, X– конкретное значение, N – число значений.

МД, D и δ применимы для интервальных и пропорционных данных. Для порядковых данных в качестве меры изменчивости обычно берут полуквартильное отклонение (Q), именуемое еще полуквартильным коэффициентом. Вычисляется этот показатель следующим образом. Вся область распределения данных делится на четыре равные части. Если отсчитывать наблюдения начиная от минимальной величины на измерительной шкале, то первая четверть шкалы называется первым квартилем, а точка, отделяющая его от остальной части шкалы, обозначается символом Qv Вторые 25 % распределения – второй квартиль, а соответствующая точка на шкале – Q2. Между третьей и четвертой четвертями распределения расположена точка Q3. Полуквартильный коэффициент определяется как половина интервала между первым и третьим квартилями:

При симметричном распределении точка Q2 совпадет с медианой (а следовательно, и со средним), и тогда можно вычислить коэффициент Q для характеристики разброса данных относительно середины распределения. При несимметричном распределении этого недостаточно. Тогда дополнительно вычисляют коэффициенты для левого и правого участков:

7. Научная и статистическая гипотезы. Статистические критерии.

Гипотеза – это научное предположение, вытекающее из теории, которое еще не подтверждено и не опровергнуто. Научная гипотеза должна удовлетворять:

  • принципам фальсифицируемости – быть опровергаемой в эксперименте; принцип фальсифицируемости абсолютен, так как опровержение теории всегда окончательно,
  • принципам верифицируемости – быть подтверждаемой в эксперименте, этот принцип относителен, так как всегда есть вероятность опровержения гипотезы в следующем исследовании.

Различают научные и статистические гипотезы. Научные гипотезы формулируются как предполагаемое решение проблемы. Статистическая гипотеза – утверждение в отношении неизвестного параметра, сформулированное на языке математической статистики. Любая научная гипотеза требует перевода на язык статистики.

Научные гипотезы. Экспериментальная гипотеза служит для организации эксперимента, а статистическая – для организации процедуры сравнения регистрируемых параметров. Статистическая гипотеза необходима на этапе математической интерпретации данных эмпирических исследований. Большое количество статистических гипотез необходимо для подтверждения или опровержения основной – экспериментальной гипотезы. Экспериментальная гипотеза – первична, статистическая – вторична.

Гипотеза может отвергаться, но никогда не может быть окончательно принятой. Любая гипотеза открыта для последующей проверки.

Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде.

Статистические гипотезы. В математической статистике термин «гипотеза» означает предположение, которое мы собираемся в данный момент проверить.

Статистическая проверка гипотезы состоит в выяснении того, насколько совместима эта гипотеза с имеющимся результатом случайного выбора.

Определение. Статистическая гипотеза – это предположение о распределении вероятностей, которое мы хотим проверить по имеющимся данным. Гипотезы различают простые и сложные:

  • простая гипотеза полностью задает распределение вероятностей;
  • сложная гипотеза указывает не одно распределение, а некоторое множество распределений. Обычно это множество распределений, обладающих определенным свойством.

Статистические гипотезы подразделяются на нулевые и альтернативные.

 

Проверка гипотез осуществляется с помощью критериев статистической оценки различий.

 

 

  1. Уровни статистической значимости.

Уровни статистической значимости. Уровень значимости – это вероятность того, что мы сочли различия существенными, а они на самом деле случайны.

Когда мы указываем, что различия достоверны на 5% уровне значимости, или при р£0,05, то мы имеем ввиду, что вероятность того, что они недостоверны, составляет 0,05.

Если же мы указываем, что различия достоверны на 1% уровне значимости, или при р£0,01, то имеем ввиду, что вероятность того, что они все-таки недостоверны равна 0,01.

Иначе, уровень значимости – это вероятность отклонения нулевой гипотезы, в то время как она верна.

 

 

Вероятность такой ошибки обычно обозначается как a. Поэтому правильнее указывать уровень значимости: a£0,05 или a£0,01.

Если вероятность ошибки – это a, то вероятность правильного решения равна: 1–a. Чем меньше a, тем больше вероятность правильного решения.

В психологии принять считать низшим уровнем статистической значимости 5%-ный уровень, а достаточным 1%-ный. В таблицах критических значений обычно приводятся значения критериев, соответствующих уровням значимости р£0,05 и р£0,01 иногда для р£0,001. Для некоторых критериев в таблицах указан точный уровень значимости их разных эмпирических значений.

До тех пор пока уровень значимости не достигнет р=0.05, мы еще не имеем право отклонить нулевую гипотезу.

 

 

Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения.

Для облегчения принятия решения можно вычерчивать ²ось значимости².

Критические значения критерия обозначены как Q0,05 и Q0,01, эмпирическое значение критерия как Qэмп. Оно заключено в эллипс.

Вправо от критического значения Q0,01 простирается ²зона значимости² – сюда попадают эмпирические значения Q, которые ниже Q0.01 и, следовательно, значимые.

Влево от критического значения Q0.05 простирается ²зона незначимости², – сюда попадают эмпирические значения Q, которые ниже Q0,05 и, следовательно, незначимы.

В нашем примере, Q0,05 =6; Q0,01=9; Qэмп=8.

Эмпирическое значение критерия попадает в область между Q0,05 и Q0,01. Это ²зона неопределенности²: мы уже можем отклонить гипотезу о недостоверности различий (Н0), но еще не можем приять гипотезы об их достоверности (Н1).

Практически, можно считать достоверными уже те различия, которые не попадают в зону незначимости, сказав, что они достоверны при р£0,05.

Мощность критерия – это его способность выявлять различия, если они есть. Иначе, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.

 

  1. Q-Критерий Розенбаума: назначение, характеристика, ограничения.

 

Назначение критерия.

Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

Описание критерия.

Это очень простой непараметрический критерий, который позволяет быстро оценить различия между двумя выборками по какому-либо признаку. Однако если критерий Q не выявляет достоверных различий, это еще не означает, что их действительно нет.

В этом случае стоит применить критерий j* – Фишера. Если же Q-критерий выявляет достоверные различия между выборками с уровнем значимости r£0,01, то можно ограничиться только им и избежать трудностей применения других критериев.

Критерий применяется в тех случаях, когда данные представлены, по крайней мере, в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q-критерия просто невозможны. Например, если у нас только 3 значения признака, 1, 2 и 3, – нам очень трудно будет установить различия. Метод Розенбаума требует достаточно тонко измеренных признаков.

Применение критерия начинается с упорядочивания значений признака в обеих выборках по нарастанию (или убыванию) признака. Для того чтобы не запутаться, в этом и во многих других критериях рекомендуется первым рядом (выборкой, группой) считать тот ряд, где значения выше, а вторым рядом – тот, где значения ниже.

Гипотезы.

h0: уровень признака в выборке 1 не превышает уровня признака в выборке 2.

h1: уровень признака в выборке 1 превышает уровень признака в выборке 2.

Ограничения критерия Q

  1. В каждой из сопоставляемых выборок должно быть не менее 11 наблюдений. При этом объемы выборок должны примерно совпадать. Е.В. Гублером указываются следующие правила:

а) если в обеих выборках меньше 50 наблюдений, то абсолютная величина разности между n1 и n2 не должна быть больше 10 наблюдений;

б) если в каждой из выборок больше 51 наблюдения, но меньше 100, то абсолютная величина разности между n1 и n2 не должна быть больше 20 наблюдений;

в) если в каждой из выборок больше 100 наблюдений, то допускается, чтобы одна из выборок была больше другой не более чем в 1,5-2 раза (Гублер Е.В., 1978, с. 75).

  1. Диапазоны разброса значений в двух выборках должны не совпадать между собой, в противном случае применение критерия бессмысленно. Между тем, возможны случаи, когда диапазоны разброса значений совпадают, но, вследствие разносторонней асимметрии двух распределений, различия в средних величинах признаков существенны.

 

 

 

  1. U-критерий Манна-Уитни: назначение, характеристика, ограничения.

Назначение U-критерия Манна-Уитни

Настоящий статистический метод был предложен Фрэнком Вилкоксоном  в 1945 году. Однако в 1947 году метод был улучшен и расширен Х. Б. Манном и Д. Р. Уитни, посему U-критерий чаще называют их именами.

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1,n2≥3 или n1=2, n2≥5, и является более мощным, чем критерий Розенбаума.

Описание U-критерия Манна-Уитни

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

 Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны.

 Эмпирическое значение  критерия U отражает то, насколько  велика зона совпадения между  рядами. Поэтому чем меньше Uэмп, тем более вероятно, что различия  достоверны.

Гипотезы U - критерия Манна-Уитни

H0: Уровень признака в  группе 2 не ниже уровня признака  в группе 1.

H1: Уровень признака в  группе 2 ниже уровня признака  в группе 1.

Ограничения U-критерия Манна-Уитни

1. В каждой выборке  должно быть не менее 3 наблюдений: n1,n2 ≥ З; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.

2. В каждой выборке  должно быть не более 60 наблюдений; n1, n2 ≤ 60.

 

 

 

 

 

 

  1. Н-критерий Крускалла-Уоллиса: назначение, характеристика, ограничения.

 

Назначение критерия

 Критерий предназначен  для оценки различий одновременно  между тремя, четырьмя и т.д. выборками  по уровню какого-либо признака.

 Он позволяет установить, что уровень признака изменяется  при переходе от группы к  группе, но не указывает на направление этих изменений.

Описание критерия

Критерий Н иногда рассматривается как непараметрический аналог метода дисперсионного однофакторного анализа для несвязных выборок. Иногда его называют критерием "суммы рангов".

 Данный критерий является  продолжением критерия U на большее, чем 2, количество сопоставляемых  выборок. Все индивидуальные значения  ранжируются так, как если бы  это была одна большая выборка. Затем все индивидуальные значения  возвращаются в свои первоначальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случайны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между выборками. Но если в одной из выборок будут преобладать низкие значения рангов, в другой - высокие, а в третьей - средние, то критерий Н позволит установить эти различия.

Информация о работе Шпаргалка по "Математической статистике"