Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 14:33, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Статистика".
По форме связи бывают:
1. Прямолинейные — с возрастанием величины факторного признака происходит непрерывное возрастание результативного признака и наоборот.
Математически такая зависимость представляется уравнением прямой:
График представлен в виде прямой. Эту зависимость называют линейной.
2. Криволинейные — с возрастанием величины факторного признака изменение результативного признака происходит неравномерно, направление его может даже меняться. Графически этот процесс представлен гиперболой, параболой и ломаной.
По степени тесноты связи:
По количеству факторов:
Для исследования функциональных связей
применяется индексный и
25. Задача корреляционного анализа
Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.
Корреляционно-регрессионный
Наиболее простым вариантом корреляционной зависимости является парная корреляция, т.е. зависимость между двумя признаками (результативным и факторным или между двумя факторными). Математически эту зависимость можно выразить как зависимость результативного показателя у от факторного показателя х. Связи могут быть прямые и обратные. В первом случае с увеличением признака х увеличивается и признак у, при обратной связи с увеличением признака х уменьшается признак у.
Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.
Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров.
Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве:
Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость - величины коррелируют.
В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается). Возможны также такие случаи: отрицательная кор-ия, отсутствие кор-ии.
Методами
корреляционного анализа
1) Взаимосвязь. Есть ли
2) Прогнозирование. Если
3) Классификация и идентификация
объектов. Корреляционный анализ
помогает подобрать набор
Из лекции: задача- кол-ое определение кол-ых связей между признаками.
26. Парный
коэффициент линейной
Для определения степени тесноты парной линейной зависимости служит линейный коэффициент корреляции r, для расчета которого можно использовать, например, две следующие формулы:
Линейный коэффициент
27. Задача регрессионного анализа
Регрессионный анализ – статистический метод, используемый для исследования отношений между двумя величинами.
Регрессия в математической статистике – зависимость среднего значения одной величины (y) от другой величины (или нескольких величин) x. В отличие от строгой функциональной зависимости y = f(x) в регрессионной модели одному и тому же значению величины x могут соответствовать несколько значений величины y, иными словами, при фиксированном значении xвеличина y имеет некоторое случайное распределение.
Регрессионный анализ используется для определения общего вида уравнения регрессии (наиболее часто используется линейная модель), оценки параметров этого уравнения, а также проверки различных статистических гипотез относительно регрессии.
Лекция: Задачей РА явл отыскание видов зависимотси между признаками у и х, а также определение параметров этой зависимости, т.е. определение теоретич линий регрессии.
Видов теоретич регрессии сущ бесконеч множ-во
Завис-ть между величиной х и у определяется исходя из их данных, их теоретич видов связей между х и у. Также может быть использ определение точности представленной линии регрессии.
28. Метод наименьших квадратов (расчёт коэффициентов)
На практике линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов, когда минимизируется сумма квадратов отклонений реально наблюдаемых Y от их оценок Y^ (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):
(M — объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда
29. Система
нормальных уравнений для
Метод наименьших квадратов состоит в том, что оценки параметров формулы (1) определяются из условия: сумма квадратов отклонений
(2)
достигает наименьшего значения.
Для определения этих оценок нужно продифференцировать (2) по всем оценкам , приравнять все производные нулю и решить полученную линейную систему из т+1 уравнений относительно т+1 неизвестных оценок параметров :
(3)
Система уравнений (3) называется системой нормальных уравнений Гаусса. Здесь для краткости записи приняты следующие обозначения сумм:
(4)
30. Ряды динамики
Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов. Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности. В каждом ряду динамики имеются два основных элемента: показатели времени t и соответствующие им уровни развития изучаемого явления у. Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления
Каждый динамический ряд содержит две составляющие:
1) показатели периодов времени (годы, кварталы, месяцы, дни или даты);
2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда.
Уровни ряда выражаются как абсолютными, так и средними или относительными величинами. В зависимости от характера показателей строят динамические ряды абсолютных, относительных и средних величин. Ряды динамики из относительных и средних величин строят на основе производных рядов абсолютных величин. Различают интервальные и моментные ряды динамики.
Динамический интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая объем явления за более длительный период, или так называемые накопленные итоги.
Динамический моментный ряд отр
Важнейшим условием правильного построения динамических рядов является сопоставимость уровней рядов, относящихся к различным периодам. Уровни должны быть представлены в однородных величинах, должна иметь место одинаковая полнота охвата различных частей явления.
Для того, чтобы избежать искажения реальной динамики, в статистическом исследовании проводятся предварительные расчеты (смыкание рядов динамики), которые предшествуют статистическому анализу динамических рядов. Под смыканием рядов динамики понимается объединение в один ряд двух и более рядов, уровни которых рассчитаны по разной методологии или не соответствуют территориальным границам и т.д. Смыкание рядов динамики может предполагать также приведение абсолютных уровней рядов динамики к общему основанию, что нивелирует несопоставимость уровней рядов динамики.
При изучении динамики общественных явлений статистика решает следующие задачи:
1) измеряет абсолютную и относительную скорости роста либо снижения уровня за отдельные проме–жутки времени;
2) дает обобщающие
3) выявляет и численно
4) дает сравнительную числовую характеристику ра–звития данного явления в разных регионах или на разных этапах;
5) выявляет факторы,
6) делает прогнозы развития
31-33. Показатели рядов динамики.
Для характеристики интенсивности развития во времени используются статистические показатели, получаемые сравнением уровней между собой, в результате чего получаем систему абсолютных и относительных показателей динамики: абсолютный прирост, коэффициент роста, темп роста, темп прироста, абсолютное значение 1% прироста. Для характеристики интенсивности развития за длительный период рассчитываются средние показатели: средний уровень ряда, средний абсолютный прирост, средний коэффициент роста, средний темп роста, средний темп прироста, среднее абсолютное значение 1% прироста.
Если в ходе исследования необходимо сравнить несколько последовательных уровней, то можно получить или сравнение с постоянной базой (базисные показатели), или сравнение с переменной базой (цепные показатели).
Базисные показатели характериз
Цепные показатели характеризую
Абсолютный прирост выражает абсолютную скорость изменения ряда динамики и определяется как разность между данным уровнем и уровнем, принятым за базу сравнения.
Абсолютный прирост (базисный)
где yi - уровень сравниваемого периода; y0 - уровень базисного периода.
Абсолютное значение одного процента прироста Ai . Этот показатель служит косвенной мерой базисного уровня. Представляет собой одну сотую часть базисного уровня, но одновременно представляет собой и отношение абсолютного прироста к соответствующему темпу роста.
Коэффициент роста Ki определяется как отношение данного уровня к предыдущему или базисному, показывает относительную скорость изменения ряда. Если коэффициент роста выражается в процентах, то его называют темпом роста.
Коэффициент роста базисный
Темп роста
Темп прироста ТП определяется как отношение абсолютного прироста данного уровня к предыдущему или базисному.
Темп прироста базисный
Средние уровни ряда рассчитываются в зависимости от вида временного ряда.
Для интервального ряда динамики абсолютных показателей средний уровень ряда рассчитывается по формуле простой средней арифметической:
где n - число уровней ряда.
Для моментного динамического ряда средний уровень определяется следующим образом.
Средний уровень моментного ряда с
равными интервалами
(9.11)
где n - число дат.
Средний абсолютный прирост (средняя скорость роста) определяется как средняя арифметическая из показателей скорости роста за отдельные периоды времени:
(9.13)
где yn - конечный уровень ряда; y1 - начальный уровень ряда.