Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:19, дипломная работа
Чтобы получить дополнительные цифровые каналы с наименьшими капитальными затратами, и предлагается использовать спектральное уплотнение. При этом получаемые длины волн эквивалентны по пропускной способности оптическим волокнам при технологии SDH. Внедрение систем DWDM определяется несколькими факторами:
- увеличение пропускной способности волоконно-оптического кабеля с помощью мультиплексирования на основе DWDM может оказаться более экономичным, чем строительство новых кабельных линий; - появляются новые службы – "пожиратели полосы пропускания"; - сигнал, мультиплексированный в системе DWDM, переносится в оптической форме без промежуточных преобразований.
Введение 5
1 Обоснование проектных решений 8
1.1 Характеристика оконечных пунктов 8
1.2 Выбор трассы 9
1.3 Расчет пропускной способности проектируемой системы DWDM 11
1.4 Выбор оптического кабеля 14
1.5 Обоснование технологии 18
2 Конструкция и архитектура аппаратных средств системы DWDM OptiX BWS 1600G 20
2.1 Выбор типа аппаратуры 20
2.2 Структура системы 25
2.3 Оптический оконечный мультиплексор (OTM) 25
2.4 Оптический линейный усилитель (OLA) 26
2.5 Оптический мультиплексор с функцией вставки/выделения (OADM) 27
2.6 Регенератор 28
2.7 Оптический корректор 29
3 Обоснование технических требований к основным компонентам системы DWDM 31
3.1 Мультиплексоры и демультиплексоры 31
3.2 Оптические усилители 34
3.3 Передатчики 37
3.4 Фотоприемники 38
3.5 Компенсаторы дисперсии 39
3.6 Аттенюаторы 41
4 Измерения и настройка систем DWDM 42
4.1 Параметры сигналов и компонентов 42
4.2 Методы измерения и контроля 46
4.3 Анализатор оптического спектра 47
4.4 Анализ поляризационно-зависимых потерь 49
4.5 Рефлектометрические измерения 51
5 Расчет параметров регенерационного участка 54
5.1 Определение длины участка по затуханию и дисперсии 54
5.2 Расчет дисперсии 57
5.3 Расчет энергетического бюджета 60
6 Расчет стрелы провеса кабеля 63
7 Расчет показателей надежности 66
8 Экономическая эффективность инвестиций 69
8.1 Исходные данные 69
8.2 Расчет объема капитальных вложений 69
8.3 Определение объема услуг и доходов от основной деятельности 72
8.4 Расчет годовой суммы эксплутационных расходов 73
8.5 Расчет прибыли и убытков 76
8.6 Определение экономической эффективности проекта 77
9 Расчет интегрального критерия уровня готовности к информационному обществу 81
10 Защита от электростатического разряда (ESD) 89
11 Охрана труда и техника безопасности 92
12. Безопасность жизнедеятельности, природопользование и охрана окружающей среды при разработке проекта 95
Заключение 107
Библиография 108
3.3 Передатчики
Современные передатчики имеют гибридную конструкцию. Лазеры и интегральные микросхемы, модулирующие излучение, объединены в единый компактный модуль, что позволяет достичь больших частот модуляции и высокой надежности. Такой модуль является электронно-оптическим преобразователем, в котором интенсивность выходного светового сигнала модулируется входным цифровым электрическим сигналом. При низких скоростях передачи модулируется управляющий ток (лазеры с внутренней модуляцией), при высоких – сам оптический сигнал (лазеры с внешней модуляцией). В системах DWDM наиболее широко применяют специализированные лазеры с распределенной обратной связью (DFB), предназначенные для работы в окне 1550 нм и обеспечивающие скорость передачи до 10 Гбит/с [4].
Полоса пропускания системы DWDM распределяется между многочисленными каналами с различными длинами волн. Все эти длины волн должны разместиться в рабочей области усилителя. Если в системе много каналов, то каждый из них необходимо тщательно контролировать. Успешное решение данной задачи определяется характеристиками источников излучения каждого канала. Системы DWDM с малым частотным интервалом можно использовать только при наличии лазера с узкой линией излучения. Узкая ширина линии минимизирует искажения импульсов, вызываемых дисперсией волокна, позволяет применять на входе перед приемником узкополосные фильтры для улучшения отношения сигнал/шум. Сильное подавление остаточных боковых полос источника излучения применяется для того, чтобы сигнал источника не взаимодействовал с другими каналами.
Передатчик не должен менять длину волны излучения со временем, т.е. оставаться в пределах полосы пропускания канала системы. Лазер оптически изолируют и на него не должны влиять паразитные отражения от среды передачи, особенно возвращающиеся от первого оптического усилителя в линии связи. Эффект старения в системах DWDM – это предельная мощность, длина волны максимума излучения и подверженность чирпированию (уширение линии излучения) источника излучения при долговременном и кратковременном использовании. Данный эффект должен оставаться в допустимых пределах.
Лазерные источники должны быть защищены от обратных отражений, так как они могут вызвать нестабильность генерации источника. Лазерные модули сами по себе довольно дороги и их замена может потребовать сложной и дорогостоящей операции по разборке и последующей перенастройки компонентов, обеспечивающих эффективную работу линии. Поддержка постоянной температуры лазерного источника обеспечивается термоэлектрическими холодильниками, которые поглощают ту часть энергии, которая не преобразуется в световую. Она рассеивается в виде тепла и влияет на характеристики лазера (длина волны, мощность) и вызывает нестабильность.
3.4 Фотоприемники
Оптический фотоприемник преобразует входные оптические сигналы в электрические и осуществляет, таким образом, их демодуляцию. Фотоприемник должен быть полностью совместим с передатчиком как по спектральной области чувствительности в пределах номинальных длин волн, так и временным характеристикам модуляции излучения. Кроме того, фотоприемник должен обладать устойчивостью к ошибкам, которые могут возникнуть в сигнале при прохождении других оптических компонентов.
Оптический сигнал подается на фотоприемник непосредственно из волокна, что обеспечивается традиционным способом – их торцевой стыковкой. Полученный на фотоприемнике электрический сигнал необходимо усилить до требуемого уровня, внеся при этом как можно меньше шумов. Может понадобиться также электронная фильтрация, для сглаживания эффективного частотного отклика усилителя. Все эти операции выполняются одним гибридным модулем, на который поступает входной оптический сигнал из волокна. Обычно в качестве фотоприемников используется два типа фотодиодов: PIN- фотодиоды и лавинные фотодиоды APD.
Важнейшие характеристики при выборе фотоприемника – это спектральная чувствительность, пороговая чувствительность, динамический диапазон, уровень шума. Эффективность приемника измеряется относительным уровнем ошибок по битам BER, которые он может обеспечить.
Необходимо также учитывать окружающие условия и конструктивные особенности, включая размер, вес, требуемую мощность и приемлемую температурную чувствительность приемника (особенно для лавинных фотодиодов), а также простоту его обслуживания и замены.
3.5 Компенсаторы дисперсии
Оптическое волокно и некоторые компоненты систем DWDM обладают хроматической дисперсией. Показатель преломления волокна зависит от длины волны сигнала, что приводит к зависимости скорости распространения сигнала от длины волны (материальная дисперсия). Даже если показатель преломления не зависел бы от длины волны, сигналы разных длин волн все равно распространялись бы с разной скоростью из-за внутренних геометрических свойств волокна (волноводная дисперсия). Результирующее воздействие материальной и волноводной дисперсий называется хроматической дисперсией.
Хроматическая дисперсия приводит к уширению оптических импульсов по мере их распространения по волокну. При большой протяженности линии связи это проявляется в том, что близко идущие импульсы начинают перекрываться, ухудшая сигнал.
Эффективная методика компенсации дисперсии заключается в умении правильно измерять как полную дисперсию основного волокна, так и коэффициент дисперсии корректирующего волокна, а также возможность проверки того, что компенсирующее волокно расчетной длины действительно устранило дисперсию.
Волокно с компенсацией
дисперсии является основным компонентом
при статическом подавлении хроматической
дисперсии. Его отрицательная
Рисунок 3.4 - Статическая компенсация хроматической дисперсии.
Она оставляет слабую волновую зависимость полной дисперсии в некотором диапазоне длин волн, поэтому с увеличением расстояния передачи разброс накопленной дисперсии увеличивается.
Компенсация может также осуществляться и с помощью дискретных компонентов, таких как брэгговские дифракционные решетки [4].
Для системы OptiX BWS 1600G наиболее подходящие оптоволоконные кабели G.655 и G.652. Они имеют положительный коэффициент дисперсии и положительный наклон дисперсии в диапазоне 1550нм. После передачи оптического сигнала на определенное расстояние накопление положительной дисперсии расширяет оптический импульс сигнала. Это сильно влияет на эффективность передачи системы. Для минимизации этого эффекта в сети применяется DCM (модуль компенсации дисперсии). DCM имеет отрицательный наклон дисперсии для компенсации положительной дисперсии передачи оптоволоконного кабеля, таким образом поддерживается первоначальная форма импульса сигнала.
Система OptiX BWS 1600G имеет различные модули компенсации дисперсии для диапазонов С и L (нас интересует С-диапазон):
Диапазон С, применяемый для оптоволоконного кабеля G.655: DCM-10, DCM-20, DCM-40, DCM-80, DCM-100.
3.6 Аттенюаторы
В линии связи после оптического передатчика часто устанавливают аттенюаторы, которые позволяют уменьшить их выходную мощность до уровня, соответствующего возможностям расположенных далее мультиплексоров и усилителей EDFA.
Применение мощных лазеров в передатчиках оправдано при отказе от необходимости использования промежуточных усилителей сигнала на линии. При этом на определенных участках сети может понадобиться ослабление мощности сигнала с помощью аттенюатора, чтобы большая мощность сигнала не приводила к нелинейным явлениям в некоторых компонентах систем DWDM. Избирательное (по длинам волн) ослабление мощности часто требуется и для того, чтобы “выровнять” спектр сигнала на входе усилителя EDFA и обеспечить равномерное усиление для всех каналов. Это особенно важно, когда в усилителе EDFA происходит добавление или выделение каналов.
На рисунке 3.5 изображен механически регулируемый оптический аттенюатор OptiX BWS 1600G.
Рисунок 3.5 - Механически регулируемый оптический аттенюатор
Поворот регулировочного винта по часовой стрелке приводит к увеличению значения затухания, т. е. к уменьшению выходной оптической мощности. Поворот регулировочного винта против часовой стрелки приводит к уменьшению значения затухания, т. е. к увеличению выходной оптической мощности. Оптический аттенюатор является высокочувствительным прибором, поэтому регулируют оптическую мощность с малым шагом.
Применение технологии DWDM дает многочисленные преимущества, однако требует высокого уровня подготовки технического персонала и современного контрольно-измерительного оборудования.
После того, как система полностью смонтирована, необходимо провести измерения оптических и электрических характеристик линии связи и убедиться, что каждый канал работает на заданной длине волны, а все элементы системы спектрально выровнены в соответствии с техническими требованиями. С разработкой и появлением систем DWDM возникли и новые методы тестирования и контроля, позволяющие убедиться, что каждый компонент и набор компонентов работают корректно и обеспечивают заданные характеристики.
Определить характеристики сигналов и компонентов DWDM на порядок сложнее, чем при тестировании технологий с передачей сигнала на фиксированной длине волны. По мере развития технологии плотного волнового уплотнения частотные интервалы между каналами уменьшаются, эксплуатационные характеристики и требования к компонентам становятся все выше, а процедуры тестирования все сложнее. Такие оптические параметры, как вносимые потери, затухание при отражении, поляризационные эффекты, должны тестироваться для целого диапазона длин волн. А новые параметры, такие, как ширина полосы частот и перекрестная связь каналов, становятся не менее критичными для характеристики системы. Основные производители тестового оборудования незамедлительно отреагировали выпуском полнофункциональных и автоматических анализаторов оптического спектра специально для тестирования систем DWDM. Продолжающееся внедрение и возрастающая сложность компонентов DWDM поднимают вопрос об интеграции с существующими системами связи технологий их контроля, а также полной автоматизации испытаний.
Конечной целью измерений параметров сигналов в системах DWDM является проверка работоспособности линии, по которой идет множество информационных потоков, т. е. подтверждение того, что полезная информация не только передается по всему оптическому тракту и что ее можно выделить из общего сигнала на принимающей стороне.
Так как реальный сигнал имеет очень сложную структуру, к тому же меняющуюся во времени, то задачу контроля упрощают, измеряя несколько ключевых характеристик: спектральных, временных и поляризационных. Основными, конечно, являются параметры спектра, связывающие длину волны излучения и его мощность, измеренную в какой-либо точке оптического тракта. Анализ полученной зависимости позволяет достаточно точно судить о прохождении реальных сигналов, при условии незначительности нелинейных явлений, неизбежных в любой оптической системе. Важнейшими параметрами отдельного канала при контроле за реальными линиями являются центральная длина волны, максимальная мощность сигнала и ширина спектра канала.
Центральная длина волны, согласно рекомендации МСЭ, должна соответствовать одному из стандартных значений. В данном дипломном проекте применяется сетка каналов с шагом 100 ГГц.
Канальная мощность представляет интерес для расчета отношения сигнал/шум, что позволяет судить о надежности выделения полезной информации из пришедшего сигнала. Уровень шума при этом определяется по диаграмме спектра, точнее, по пороговому уровню сигнала. В протяженной линии, имеющей промежуточные усилители, на стадии строительства и ввода в эксплуатацию необходимо применять эталонные источники лазерного излучения, поскольку при расчетах используется так называемое «актуальное» отношение сигнал/шум как показано на рисунке 4.1, т. е. разница между полезным сигналом и уровнем аккумулированных шумов. В этом случае пороговый уровень включает в себя аккумулированные шумы и, соответственно, располагается выше.
Рисунок 4.1 - Влияние аккумулированного шума.
Чем длиннее линия, тем шире спектр сигнала, во-первых, из-за влияния нелинейных эффектов во всем волоконно-оптическом тракте и, главным образом, в усилителях, а во-вторых, в результате поляризационно-модовой дисперсии (Polarized Mode Dispersion, PMD) сигнала в оптическом кабеле. Контроль спектральной ширины канала особенно важен для систем с близко расположенными каналами, где даже небольшое расширение сигнала в спектральной области может означать его переход в соседнюю область.
Еще одна важная характеристика сигнала — стабильность указанных параметров во времени, в особенности стабильность центральной длины волны источника излучения в течение длительного времени, а также стохастические процессы вследствие, например, флуктуаций поляризационно-зависимых потерь на любом участке оптического тракта.
В идеальной системе DWDM демультиплексор должен выделить каждый компонент входного сигнала и направить его на отдельный выход, независимо от мощности сигнала в любом другом канале. Однако поведение реальных устройств отклоняется от описанного, и сигнал на выходе одного канала частично передается в другие каналы. Величина остаточного сигнала, появляющегося на различных выходах, определяется взаимным влиянием каналов (crosstalk).
Информация о работе Проект транспортной сети с применением оборудования OPtix 1600G