Способы защиты от вибрации и шума

Автор работы: Пользователь скрыл имя, 06 Октября 2015 в 17:44, курсовая работа

Краткое описание

Технология WDM была предложена в 1980 года Дж. П. Лауде (компания Instruments SA) и сначала её применение ограничивалось сферой междугородной телефонной связи и телевещания. Перспективы её распространения стали более радужными после кардинального изменения ситуации на американском рынке телекоммуникационных услуг связи (в середине 90-х гг.). Прежде линии связи использовались главным образом для транспортировки голоса, теперь же значительную часть передаваемого по ним трафика составляют данные, объем которых растет опережающими темпами. Особенно быстро, на 80-100% в год, увеличивается объем трафика Internet, причем этот процесс приобрел труднопрогнозируемый характер.

Вложенные файлы: 1 файл

4 ДП.docx

— 486.73 Кб (Скачать файл)

Рис. 2.9 Отражение составного сигнала дифракционной решеткой

Представим, что в падающем свете присутствует излучение разных длин волн. Можно выбрать угол падения таким образом, что волны определенной длины при отражении от отдельных линий решетки будут отличаться по фазе друг от друга ровно на одну длину волны. В этом случае все отраженные волны будут усиливать друг друга. Такой угол будет углом максимального пропускания для заданной длины волны падающего света.

В устройствах мультиплексирования и демультиплексирования дифракционные решетки располагаются на пути света таким образом, чтобы сигнал нужной длины волны мог быть выделен из составного сигнала или добавлен в него. Хотя устройства на основе дифракционных решеток дороги и сложны в производстве, вносимые ими потери практически не зависят от числа каналов, что делает эту технологию одной из наиболее привлекательных для использования в системах с большим числом каналов. Однако при этом требуется тщательно контролировать поляризацию падающего оптического излучения.

 

2.4.4 Устройства  интегральной оптики

 

Интегральные оптические устройства мультиплексирования и демультиплексирования – это оптический эквивалент интегральных схем в электронике. Оптические волноводы в несколько слоев помещаются на подложку из кремния или ниобата лития. В таком небольшом блоке содержится множество оптических компонентов, взаимосвязанных друг с другом. При использовании современного полностью автоматизированного оборудования возможно массовое производство таких блоков.

Интегральная оптика – относительно новая технология. Для того чтобы полностью использовать ее потенциал, требуются дальнейшие научные исследования и конструкторские разработки. В настоящее время интегральная оптика используется при производстве оптических разветвителей, коммутаторов, модуляторов, эрбиевых и легированных различными редкоземельными элементами волноводных усилителей, брэгговских решеток и других компонентов систем DWDM.

Интегральная оптика успешно применяется для создания решеток на основе массива планарных волноводов (более 100) различной длины между двумя планарными линзами смесителями AWG (Arrayed Waveguide Gratings), рис. 2.10.

 

 

Рис. 2.10 Решетка на основе массива волноводов AWG – принцип работы

 

Входной сигнал, который содержит излучение разных длин волн, попадает во входной разветвитель. Там он расщепляется на N оптических лучей, каждый из которых попадает в отдельный волноводный канал. Все N волноводных каналов, образующих волноводную матрицу, имеют разную длину и вносят в сигнал разные фазовые сдвиги, зависящие от длины волны. После этого световые пучки из отдельных волноводных каналов вновь объединяются в выходном разветвителе и интерферируют таким образом, что излучение разных длин волн попадает в разные выходные волноводы.

Решетки на основе массива волноводов AWG используются для того, чтобы перераспределять сигналы различных длин волн (каналы) между двумя наборами волокон (рис. 2.10) или выделить (демультиплексировать) отдельные каналы составного сигнала в отдельные волокна. Эта технология сейчас становится основной для производителей мультиплексоров и демультиплексоров систем DWDM. Благодаря легко масштабируемой структуре, она может широко применяться в системах с сотнями каналов.

Решетки AWG еще также называют “драконовыми маршрутизаторами” (Dragon Routers), фазовыми матрицами или фазарами.

 

2.4.5 Сварные биконические  разветвители

 

Простейший биконический разветвитель FBT (Fused Biconic Tapered) представляет собой пару одномодовых оптических волокон, на определенном участке сваренных друг с другом по длине. Основная мода волокна, которая распространяется по сердцевине одного из оптических волокон, при прохождении области сварки преобразуется в моды оболочки. Когда волокна снова разделяются, моды оболочки снова преобразуются в моды волокна, распространяющиеся по сердцевине каждого из выходных волокон. В результате получается разветвитель, практически не вносящий потерь. Выходные сигналы не обязательно имеют равную мощность, соотношение их мощностей определяется интерференцией в области сварки волокон и зависит от длины этой области.

Если два таких разветвителя расположены последовательно (рис. 2.11), и два рукава имеют разные оптические пути между местами сварки, то такая комбинация действует подобно интерферометру Маха-Цендера. Мощность входного сигнала распределяется между выходными волноводами в зависимости от длины волны с определенной периодичностью. Если составной входной сигнал содержит оптические каналы двух различных длин волн, то при определенном подборе параметров эти каналы на выходе окажутся в разных выходных волокнах. Второе входное волокно не используется.

 

 

Рис. 2.11 Входной сигнал распределяется между двумя выходами

 

Если на вход поступает составной сигнал, который содержит большое количество каналов на разных частотах (с одинаковыми расстояниями между ними), на выходе в каждом волокне будет по половине каналов с расстоянием между частотами в два раза больше. Используя последовательно несколько разветвителей, можно вывести каждый канал в отдельное волокно.

Массивы таких устройств, отдельные секции которых иногда заменены брэгговскими решетками, используются для выделения каналов определенной частоты из многоканальных систем WDM и DWDM или для добавления каналов в каком-либо узле оптической сети.

Поскольку они являются полностью пассивными устройствами и имеют низкие потери, допустимо применение достаточно больших наборов таких устройств.

 

2.5 Электронные компоненты  систем оптической связи

 

 

Рис. 2.12 Структурная схема системы оптической связи

 

Теперь коснемся проблемы передачи и приема оптических сигналов. Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме.

В течение последующих трех лет появилось второе поколение - одномодовые передатчики, работающие на длине волны 1.3 мкм.

В 1982 году родилось третье поколение передатчиков - диодные лазеры, работающие на длине волны 1.55 мкм.

Исследования продолжались, и появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения.

Такие системы связи обеспечивают большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.

Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров.

Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.

В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.

Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.

 

2.5.1 Волоконно-оптический  кабель и оптические соединители

 

Вторым важнейшим компонентом, определяющим надежность и долговечность ВОЛС, является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.

По условиям эксплуатации кабели подразделяют на:

  • монтажные

  • станционные

  • зоновые

  • магистральные

Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.

Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

При изготовлении ВОК в основном используются два подхода:

  • конструкции со свободным перемещением элементов

  • конструкции с жесткой связью между элементами

По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.

 

2.5.2 Оптические соединители

 

 

Рис. 2.13 Оптические соединители

 

После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов. Сегодня мы рассмотрим лишь основные виды, получившие наибольшее распространение в мире. Внешний вид разъемов показан на рисунке.

Характеристики коннекторов представлены в таблице 1. Когда мы говорим, что данные виды коннекторов имеют наибольшее распространение, то это означает, что большинство приборов ВОЛС имеют розетки (адаптеры) под один из перечисленных видов коннекторов.

Хотелось бы сказать несколько слов о последнем разделе таблицы 2.5 В нем упомянут новый тип фиксации: "Push-Pull".

 

Таблица 2.5 Характеристики коннекторов

 

Тип разъема

ЛВС

Телеком-муникации

Кабель-ное ТВ

Измерит. аппар-ра

Дупл.

системы связи

Фиксация

FC/PC

+

+

+

   

Резьба

ST

+

+

     

BNC

SMA

+

   

+

 

Резьба

SC

+

+

+

+

 

Push-Pull

FDDI(MIC)

+

     

+

Push-Pull


 

Фиксация "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.

 

 

 

2.6 Блок-схема систем c WDM

 

Основная схема системы c WDM (для примера взято четыре канала) имеет вид, представленный на рис. 2.14 (показан один прямой канал).

 

 
Рис. 2.14 Структурная блок-схема системы, использующей WDM

 

Здесь n входных потоков данных (кодированных цифровых импульсных последовательностей) модулируют (модуляция основной полосой) с помощью оптических модуляторов M i оптические несущие с длинами волн l i. Модулированные несущие мультиплексируются (объединяются) с помощью мультиплексора WDM Mux в агрегатный поток, который после усиления (с помощью бустера или мощного усилителя – МУ) подается в ОВ. На приемном конце поток с выхода ОВ усиливается предварительным усилителем – ПУ, демультиплексируется, т.е. разделяется на составляющие потоки – модулированные несущие   l i, которые детектируются с помощью детекторов Д i (на входе которых могут дополнительно использоваться полосовые фильтры Фi для уменьшения переходных помех и увеличения тем самым помехоустойчивости детектирования), и, наконец, демодулируются демодуляторами ДMi, формирующими на выходе исходные кодированные цифровые импульсные последовательности. Кроме МУ и ПУ в системе могут быть использованы и линейные усилители – ЛУ.

Информация о работе Способы защиты от вибрации и шума