Ионизирующие и ультрафиолетовое излучение

Автор работы: Пользователь скрыл имя, 02 Ноября 2015 в 08:47, контрольная работа

Краткое описание

Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет.

Содержание

Введение……………………………………………………………………….......3
Ионизирующее излучение……………………………..…………………..…..4
Виды ионизирующих излучений………………..……………………….....…5
Биологическое действие ионизирующего излучения………………….........8
Защита от ионизирующих излучений……………………………………….10
Ультрафиолетовое излучение………….…………………………….…..…..12
Источники ультрафиолетового излучения……………..………….……......14
Влияние ультрафиолетового излучения на организм человека ……….….15
Применение ультрафиолетового излучения ………………………………..17
Заключение…………………………………………………………………….…18
Список использованной литературы…………………………………………...19

Вложенные файлы: 1 файл

МЕДИКО-биологические основы ГОТОВАЯ.docx

— 46.42 Кб (Скачать файл)

Принять меры защиты от проникновения в квартиру (дом) радиактивных веществ с воздухом:  закрыть форточки, уплотнить рамы и дверные проёмы.

Сделать запас питьевой воды: набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны. Провести экстренную йодную профилактику (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается 100%-ная степень защиты от накопления радиоактивного йода в щитовидной железе.

Начать готовиться к возможной эвакуации.  Подготовить документы и деньги, предметы, первой необходимости, упаковать лекарства, минимум белья и одежды. Собрать запас консервированных продуктов. Все вещи следует упаковать в полиэтиленовые мешки. Постараться выполнить следующие правила: принимать консервированные продукты; не пить воду из открытых источников; избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, не купаться; входя в помещение с улицы, снимать обувь и верхнюю одежду. В случае передвижения по открытой местности используйте подручные средства защиты: органов дыхания: прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды.

   
         
         
         

.

       
   

Ультрафиолетовое излучение

           Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

        Ультрафиолетовые  лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400—10 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (400—200 нм) и далёкую, или вакуумную (200—10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом  и его исследование производят с помощью вакуумных  спектральных  приборов.

         Спектр ультрафиолетового излучения  может быть линейчатым, непрерывным  или состоять из полос в  зависимости от природы источника  ультрафиолетового излучения.  Линейчатым  спектром обладает УФ-излучение  атомов,  ионов или лёгких молекул (например H2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно - вращательными переходами молекул. Непрерывный спектр возникает при торможении и рекомбинации электронов.

            Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3...4%. На долю рассеянного ультрафиолета в летний полдень приходится 45...70% излучения, а достигающего земной поверхности - 30...55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни. Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290...289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350...380 нм. Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400... 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой.

 

 

 

 

 

 

 

 

Источники  ультрафиолетового излучения

         Излучение накалённых до 3000 К твёрдых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное ультрафиолетовое излучение испускает Плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений ультрафиолетового излучения промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетовое излучение непрерывного спектра испускают электроны, ускоренные в синхротроне (Синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (Лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм). Естественные источники ультрафиолетового излучения — Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть ультрафиолетового излучения (λ > 290 нм) достигает земной поверхности. Более коротковолновое УФ-излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30—200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и др. космических тел, кроме поглощения в земной атмосфере, в интервале 91,2—20 нм практически полностью поглощается межзвёздным водородом.

   
   

Влияние ультрафиолетового излучения на организм человека

          Единственным естественным источником ультрафиолетового излучения является Солнце, основная энергия которого достигает поверхности Земли в видимом и инфракрасном спектральном диапазоне. Ультрафиолетовое излучение области ультрафиолетового излучения не задерживается озоновым слоем, проходит через роговой слой кожи. Не отмечается существенных колебаний в интенсивности ультрафиолетового излучения в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% ультрафиолетового излучения и около 1% от общей его энергии достигает подкожной клетчатки. Следует обратить особое внимание, что высота Солнца над горизонтом влияет не только на уровень потока солнечной энергии, но особенно и на соотношение УФ-А и УФ-В составляющих ультрафиолетового излучения. Уровень потока ультрафиолетового излучения меняется и в течение дня, и от времени года. При этом среднее значение в полдень в летние месяцы потока УФ-А по отношению к УФ-В приблизительно в два раза выше на уровне Полярного Круга, чем на экваторе.

В целом ряде исследований подтверждено, что для городов, расположенных в северных регионах, длительный период ультрафиолетового дефицита может привести к развитию патологического состояния, известному как "световое голодание". Проявлениями этого состояния являются: нарушение минерального обмена, развитие дефицита витамина D, приводящее к рахиту у детей, резкое сокращение защитных сил организма. Так установлено, что индексы заболеваемости рахитом на широте 65 градусов северной широты в 2,5-3 раза выше, чем на широте 45 градусов. Отмечена взаимосвязь дефицита витамина D и зубного кариеса.

Исследования,  выполненные различными авторами, привели к выводу, что солнечный свет,  играет защитную роль в отношении заболеваний раком молочной железы,  яичников,  предстательной железы и рака толстой кишки. Ряд исследований позволяет предположить, что ультрафиолетовое излучение подавляет реакции иммунной системы человека, где основную роль возлагали на воздействие излучения УФ-В. Ультрафиолетовое излучение области УФ-А, которое используется в настоящее время в профессиональных и домашних соляриях, не вызывает солнечных ожогов и считается безопасным. Однако, именно эта область ультрафиолетового излучения, главным образом, ответственна за появление признаков фотостарения, а также за УФ-индуцированный канцерогенез, так как является основным фактором цитотоксического воздействия излучения в базальном слое эпидермиса за счет образования свободных радикалов и повреждения цепей ДНК. При УФ-А облучение не происходит существенного увеличения синтеза меланина, загар будет кратковременным, а отсутствие в спектре излучения УФ-В не приведет к увеличению синтеза витамина D. С другой стороны, повреждающее действие на кожу (фотостарение, образование свободных радикалов) будет не только сохраняться, но, возможно, и усиливаться, поскольку определить минимальную энергетическую экспозицию ультрафиолетового излучения, вызывающую заметную эритему необлученной ранее кожи для УФ-А крайне сложно. Облучение лампами УФ-А диапазона, используемыми в соляриях, также не лишено риска с точки зрения канцерогенеза.

   
   
 
   
 
   
   
 

                          

             

Применение ультрафиолетового излучения

Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов.  Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и т.д., см. Фотохимия). Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и т.п. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций. Способность многих веществ к избирательному поглощению ультрафиолетового излучения используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Из важнейших проблем современности, проблем человека, особую остроту приобрела экология человека. Человек оказался уязвимым под мощным натиском последствий своей собственной преобразовательной деятельности. Эти последствия обнаружились не только в процессах функционирования природно-биологической основы его естества, но и его социальных и духовных качеств. Для организма человека вредное влияние оказывает как недостаток ультрафиолетового излучения, так и его избыток. Воздействие на кожу больших доз УФ-излучения приводит к кожным заболеваниям. Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др. Источники излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях. Однако источники ионизирующего излучения представляют существенную угрозу здоровью и жизни использующих их людей.

Дозой излучения – называется часть энергии, переданная излучением веществу и поглощенная им. Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. При проведении работ с источниками ионизирующих излучений опасная зона должна быть ограничена предупреждающими надписями.

 

 

 

 

Список использованной литературы

       

  1. Денисов В.В., Денисова И.А., Гутенев В.В., Монтвила О.И. Безопасность жизнедеятельности. Защита населения и территорий при чрезвычайных ситуациях: Учеб. пособие. – Москва: ИКЦ «МарТ», Ростов н/Д: Издательский центр «МарТ», 2003. – 608 с.
  2. Круглов В.А. Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность / В.А. Круглов, С.П. Бабовоз, В.Н. Пилипчук и др. / Под ред. В.А. Круглова. – Мн.: Амалфея, 2003. – 368 с.
  3. Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967;
  4. Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; 
  5. Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. — М., 1950;
  6. Белов С.В. БЖД. - М.: Просвещение, 2002. - 126 стр.
  7. Солонина Ю.Н. Экология и человек. - М: Просвещение, 2002. - 165 стр.

Интернет-ресурсы:

      http://dic.academic.ru

      http://bgd.my1.ru

      http://www.medka.ru 
Список литературы

1. 2. Маркова Б.В. Современные  проблемы экологии человечества. - М: Инфра - М, 2006. - 78 стр.

3. 4. Сивков В.П. Экология  человека. - М.: Проспект, 2004. - 126 стр.

5

 

 


Информация о работе Ионизирующие и ультрафиолетовое излучение