Автор работы: Пользователь скрыл имя, 13 Января 2013 в 13:46, курсовая работа
Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически первой ступенью автоматизации, без успешного функционирования которых невозможно создание эффективных АСУ ТП.
Министерство общего
и профессионального
Новокузнецкий филиал – Институт Кемеровского Государственного Университета
Кафедра технической кибернетики
Факультет информационных технологий
Выполнил:
студент III курса ФИТ
группы ИАС 98-1
Батенев А. А.
Курсовая работа
По курсу "Метрология и измерения"
Руководитель:
ст. преп.
Ельцов В. П.
Курсовая работа
защищена с оценкой “_________”
_____________________________
(подпись руководителя)
“_____” ________________ 2001 г.
Высокопроизводительная, экономичная
и безопасная работа технологических
агрегатов металлургической промышленности
требует применения современных
методов и средств измерения
величин, характеризующих ход
В истории развития мировой техники можно выделить три основных направления: создание машин-двигателей (водяных, ветряных, паровых, внутреннего сгорания, электрических), которые освободили человека от тяжелого физического труда; создание машин-орудий, т.е. станков и технологического оборудования различного назначения; создание устройств для контроля и управления машинами-двигателями, машинами-орудиями и технологическими процессами.
В современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы, ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты. При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии. По этому возрастает роль автоматического контроля и управления производственными процессами. Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы.
Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.
Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.
Все предлагаемы температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связанно с температурой t:
где k – коэффициент пропорциональности; E – термометрическое свойство; D – постоянная.
Принимая для двух постоянных точек определенные значения температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.
Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.
В начале XX века широко применялись шкалы Цельсия и Реомюра, а в научных работах – также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ).
Опыт применения
МТШ показал необходимость
Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей, газов и твердых тел. Существуют десятки различных устройств применяемых в промышленности, при научных исследованиях, для специальных целей.
В таблице 1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения.
Таблица 1
Термометрическое свойство |
Наименование устройства |
Пределы длительного применения, 0С | |
Нижний |
Верхний | ||
Тепловое расширение |
Жидкостные стеклянные термометры |
-190 |
600 |
Изменение давления |
Манометрические термометры |
-160 |
60 |
Изменение электрического сопротивления |
Электрические термометры сопротивления. |
-200 |
500 |
Полупроводниковые термометры сопротивления |
-90 |
180 | |
Термоэлектрические эффекты |
Термоэлектрические термометры (термопары) стандартизованные. |
-50 |
1600 |
Термоэлектрические термометры (термопары) специальные |
1300 |
2500 | |
Тепловое излучение |
Оптические пирометры. |
700 |
6000 |
Радиационные пирометры. |
20 |
3000 | |
Фотоэлектрические пирометры. |
600 |
4000 | |
Цветовые пирометры |
1400 |
2800 |
Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).
Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 1). Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.
В качестве термометрического вещества
чаще всего применяют химически
чистую ртуть. Она не смачивает стекла
и остается жидкой в широком интервале
температур. Кроме ртути в качестве
термометрического вещества в стеклянных
термометрах применяются и
Основные достоинства
Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:
У лабораторных и других термометров,
градуируемых и предназначенных
для измерения при погружении
в измеряемую среду до отсчитываемого
деления, могут возникать
где - коэффициент видимого объемного теплового расширения термометрической жидкости в стекле , t – действительная температура измеряемой среды 0C, tв.с. – температура выступающего столбика, измеренная с помощью вспомогательного термометра 0С, n – число градусов в выступающем столбике.
У термометров, предназначенных для работы с неполным погружением, может возникнуть аналогичная систематическая погрешность, если температура окружающей среды, а следовательно, и выступающего столбика будут отличаться от его температуры при градуировке. Поправка , в этом случае
где - температура выступающего столбика при градуировке 0C (в первом приближении допустимо считать ), - средняя температура выступающего столбика 0С.
Поправки по (1) и (2) могут иметь большие значения у термометров с органическими термометрическими жидкостями, для которых коэффициент примерно на порядок выше, чем у ртутных термометров.
Действие манометрических
Манометрические термометры подразделяют на три основных разновидности:
Достоинствами манометрических термометров
являются сравнительная простота конструкции
и применения, возможность дистанционного
измерения температуры и
Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво – или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.