Шпаргалки по "Материаловедению"

Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 19:16, шпаргалка

Краткое описание

1. Типы связей в твердых телах (ионная, ковалентная, металлическая связь)
2. Атомно-кристаллическое строение металла
3. Кристаллографическое обозначение атомных плоскостей и направлений
4. Анизотропия металлов
5. Строение реальных кристаллов
6. Кристаллизация металлов
7. Строение слитка
8. Полиморфные превращения в металлах
9. Пластическая деформация и механические свойства в металлов
10. Наклеп, возврат, рекристаллизация
11. Химическое соединение, твердые растворы, механические смеси
12. Построение диаграмм состояния двойных систем. Правило фаз
13. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов
14. Правило отрезков
15. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии
16. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии (диаграмма с эвтектикой, диаграмма с перитектикой)
17. Диаграмма состояния для сплавов, образующих устойчивое химическое соединение
18. Диаграмма состояния с неустойчивым химическим соединением
19. Диаграмма состояния железо-цементит
20. Углеродистые стали
21. Влияние постоянных примесей на свойство сталей
22. Нагартованная сталь
23. Чугуны (белый, серый, высопкопрочный, ковкий). Получение, структура, маркировка, область применения
24. Основные виды термической обработки стали
25. Превращение в стали при нагревании
26. Рост зерен аустенита при нагреве
27. Превращение переохлажденного аустенита(распад аустенита)
28. Мартенситное превращение
29. Превращение мартенсита и Аост при нагреве(отпуск стали)
30. Обратимая и необратимая отпускная хрупкость
31. Технология термическая обработка стали. Отжиг первого рода
32. Отжиг второго рода
33. Закалка стали (выбор температуры закалки, время нагрева, защита стали от окисления и обезугрероживания)
34. Скорость охлаждения при закалке. Закаливаемость и прокаливаемость стали. Способы закалки
35. Закалка с обработкой холодом
36. Отпуск стали
37. Поверхностная закалка стали
38. Физические основы химико-термической обработки
39. Цементация (все о цементации)
40. Азотирование (все о азотировании)
41. Цианирование
42. Диффузионная металлизация
43. Конструкционные стали
44. Маркировка легированных сталей
45. Цементация стали
46. Улучшаемые стали
47. Пружинные стали
48. Шарикоподшипниковые стали
49. Инструментальные стали повышенной прокаливаемости
50. Инструментальные стали пониженной прокаливаемости
51. Быстрорежущие стали
52. Штамповые стали
53. Твердые сплавы
54. Алюминий и сплавы на основе алюминия
55. Медь и сплавы на основе меди
56. Сплавы на основе легкоплавких металлов
57. Основы порошковой металлургии

Вложенные файлы: 1 файл

0533906_45998_shpory_materialovedenie.doc

— 2.18 Мб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Диаграмма состояния для сплавов с неограниченной растворимостью компонентов в твердом состоянии. Правило рычага(правило отрезков). Для одного из сплавов построить кривую охлаждения и описать превращения, происходящие при охлаждении.

Сначала получают терм. кривые. Полученные точки переносят на диаграмму, соединив точки начала кристаллизации сплавов и точки конца кристаллизации, получают диаграмму состояния.

Проведем анализ полученной диаграммы.

1. Количество компонентов: К = 2 (компоненты  А и В).

2. Число фаз: f = 2 (жид. фаза L, кристал. твердого раствора )

3. Основные линии диаграммы сплавов:

  • acb – линия ликвидус, выше этой линии в жидком состоянии;
  • adb – линия солидус, ниже этой линии в твердом состоянии.

4. Характерные сплавы системы:

Чистые компоненты А и В кристаллизуются при постоянной температуре, кривая охлаждения компонента В.

Остальные сплавы кристаллизуются аналогично сплаву I, кривая охлаждения которого представлена на б.

 

Правило отрезков.  Посредством правила отрезков можно определить состав фаз в любой двухфазной области и количественное их соотношение. Правило отрезков состоит из двух частей. Первая часть: для того чтобы определить состав фаз через заданную точку в двухфазной области (точка соответствует конкретной температуре) проводят горизонтальную линию до пересечения с линиями, ограничивающими эту область. Проекция точек пересечения на ось концентрации даст нам состав фаз. Вторая часть: для того чтобы определить количество фаз через заданную точку проводят горизонтальную линию до пересечения с линией, ограничивающей эту область. Отрезки между заданной точкой и точками с соответствующим составом фаз обратно    пропорциональны их количеству.

 

 

  1. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов, с наличием эвтектики. Для одного из сплавов построить кривую охл. и описать превращения, происходящие при охлаждении.

Проведем анализ диаграммы состояния.

1. Количество компонентов: К = 2 (компоненты А и В);

2.Число фаз: f = 3(кристаллы компонента А и В, жидк. фаза).

3. Основные линии диаграммы:

  • линия ликвидус acb;
  • линия солидус ecf;

4. Типовые сплавы системы.

а) Чистые компоненты, кристаллизуются при постоянной температуре, на б показана кривая охлаждения компонента А.

б). Эвтектический сплав – сплав, соответствующий конц. компонентов в точке с (сплав I). Кривая охлаждения этого сплава, аналогична кривым охлаждения чистых металлов (б)

Эвтектика – мелкодисперсная механическая смесь разнородных кристаллов, кристаллизующихся одновременно при постоянной, самой низкой для рассматриваемой системы, температуре.

При образовании сплавов механических смесей эвтектика состоит из кристаллов компонентов А и В: Эвт. (кр. А + кр. В)


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Диаграмма состояния для сплавов с ограниченной растворимостью компонентов в твердом состоянии и с наличием эвтектики. Для одного из сплавов построить кривую охл. и описать превращения, происходящие при охл..

1. Количество компонентов: К = 2 (компоненты А и В);

2. Число фаз: f = 3 (жидкая фаза  и кристаллы твердых растворов  (раствор компонента В в компоненте А) и ( раствор компонента А в компоненте В));

3. Основные линии диаграммы:

линия ликвидус acb, состоит из двух ветвей, сходящ. в одн. точк;

линия солидус аdcfb, состоит из трех участков;

dm – линия  предельной концентрации компонента  В в комп. А;

fn – линия  предельной концентрации компонента  А в комп. В.

4. Типовые сплавы системы.

При концентрации компонентов, не превышающей предельных значений (на участках Аm и nВ), сплавы кристаллизуются аналогично сплавам твердым растворам с неограниченной растворимостью, см кривую охлаждения сплава I на рис. 5.5 б. При концентрации компонентов, превышающей предельные значения (на участке dcf).


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Связь между свойствами сплавов и типом диаграммы состояния.

1.При образовании механических смесей свойства изменяются по линейному закону. Значения характеристик свойств сплава находятся в интервале между хар. чистых компонентов.

2.При образовании твердых растворов с неограниченной растворимостью свойства сплавов изменяются по криволинейной зависимости, причем некоторые свойства, например, электросопротивление, могут значительно отличаться от свойств компонентов.

3.При образовании твердых растворов с ограниченной растворимостью свойства в интервале концентраций, отвечающих однофазным твердым растворам, изменяются по криволинейному закону, а в двухфазной области – по линейному закону. Причем крайние точки на прямой являются свойствами чистых фаз, предельно насыщенных твердых растворов, образующих данную смесь.

4.При образовании химических соединений концентрация химического соединения отвечает максимуму на кривой. Эта точка перелома, соответствующая химическому соединению, называется сингулярной точкой.

  1. Фазы и структурные составл.  диаграмме .

Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.

Диаграмма состояния железо – С дает осн. представление о строении железоугл. сплавов – сталей и чугунов.

Диаграмма железо – С должна распространяться от железа до углерода. Железо образует с С хим. соединение: цементит – . Каждое устойчивое хим. соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до , то рассматриваем часть диаграммы состояния от железа до хим. соединения Ц, содержащего 6,67% С.

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.

1.Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления – 1539o С 5o С.

2.Углерод неметалл. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристал. решеткой.

3.Цементит (Fe3C) – хим. соединение железа с С (карбид железа), содержит 6,67 % С.

В системе железо – С существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.

1.Жидкая  фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит (Ф) (C) – твердый раствор внедрения С в -железо.

3. Аустенит (А) (С) – твердый раствор внедрения С в -железо.

4.Цементит (Fe3C) – хим. соединение железа с С (карбид железа), содержит 6,67 % С.

  1. Рассмотреть превращение, происходящие при охлаждении железо-углеродистого сплава с содерж. 0,3% C.

  1. Рассмотреть превращение, происходящие при охлаждении железо-углеродистого сплава с содерж. 1,0% C.
  2. Рассмотреть превращение, происходящие при охлаждении железо-углеродистого сплава с содерж. 3,0% C.

 

 

 

 

 

 

 

 

  1. Рассмотреть превращение, происходящие при охлаждении железо-углеродистого сплава с содерж. 5,0% C.

 

  1. Влияние углерода и постоянных примесей на свойства углеродистых сталей.

С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.

C–углерод влияет на вязкие свойства. Увелич. содержания C повышает порог хладоломкости и снижает ударную вязкость.

Повышаются электросопротивление и коэрцитивная сила, снижаются магн. проницаемость и плотность магн. индукции.

C оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием C также плохо обрабатываются резанием.

Si: повышает s и уменьшает способность вытяжки.

Mn: повышает прочность, не снижая пластичности, снижает красноломкость и вред от O2 и S.

Р: растворяется в Ф и выделяется на гр. зерен, охрупчивает сталь, придает хладоломкость.

S: увеличивает красноломкость.ВРЕДНА!!!

Красноломкость – повышение хрупкости при высоких темп..

  1. Углеродистые стали обыкн. качества. Качественные углеродистые стали. Маркировка, применения.

Качественные углеродистые стали. Стали содержат повышенное количество серы и фосфора

Маркируются Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.

Ст – индекс данной группы стали. Цифры от 0 до 6 - это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. По гарантиям при поставке существует три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются и механические свойства, и химический состав.

Индексы кп, пс, сп указывают степень раскисленности стали: кп - кипящая, пс - полуспокойная, сп - спокойная.

Качественные стали поставляют с гарантированными механическими свойствами и химическим составом (группа В). Степень раскисленности, в основном, спокойная.

Конструкционные качественные углеродистые стали Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.

Сталь 08 кп, сталь 10 пс, сталь 45.

Содержание углерода, соответственно, 0,08 %, 0,10 %, 0.45 %.

Инструментальные качественные углеродистые стали маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента.Сталь У8, сталь У13.

Содержание углерода, соответственно, 0,8 % и 1,3 %

Инструментальные высококачественные углеродистые стали. Маркируются аналогично качественным инструментальным углеродистым сталям, только в конце марки ставят букву А, для обозначения высокого качества стали. Сталь У10А.

  1. Серые, высокопрочные чугуны. Чугуны с вертикальным графитом. Маркировка, структура, свойства, применения.

Серые чугуны содержат С – 3,2…3,5 %; кремния – 1,9…2,5 %; марганца –0,5…0,8 %; фосфора – 0,1…0,3 %; серы – < 0,12 %.

Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.

Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Обозначаются индексом СЧ и числом, которое показывает значение предела прочности, умноженное на СЧ 15.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.

Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.

Обозначаются индексом ВЧ и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.

 

 

  1. Ковкие и антифрикционные чугуны. Чугуны с верт. графитом. Маркировка, структура, свойства, применения.

Ковкие чугуны содержат: С – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %. Получают отжигом белого доэвтектического чугуна.

Структура после выдержки состоит из А и графита (С отжига). При медленном охл. в интервале 760…720oС, происходит разложение цементита, входящего в состав П, и структура после отжига состоит из Ф и С отжига (получается Ф ковкий чугун).

Информация о работе Шпаргалки по "Материаловедению"