Автор работы: Пользователь скрыл имя, 08 Июня 2014 в 22:53, реферат
Становление новоевропейской культуры отмечено рождением того феномена, который впоследствии получил название "духа капитализма" и первые ростки которого, связанные прежде всего с увеличением денежного запаса, историки политэкономии обнаруживают уже в XIV-XV вв. В Италии, в частности в богатой Флоренции, где в XIV в. деньги стали играть большую роль в хозяйстве и натуральный обмен все больше вытеснялся денежным, постепенно входит в быт важнейший элемент капиталистического хозяйства - счет, отчетность, бухгалтерский учет - "клеточка" капиталистически-рациональной экономики. Благодаря этому человек, по словам В. Зомбарта, "приучается к чисто количественному воззрению на мир". В XV в. во флорентийском деловом мире распространился способ рационального ведения коммерческих и вообще хозяйственных дел, о чем свидетельствуют в частности "Семейные книги" флорентийца Леона Баттиста Альберти - очень интересный исторический документ.
Это "двойное подчинение" геометрии сказывается сразу же, как только на нее пытаются опереться художники, пользующиеся методом перспективы. С одной стороны, тут, казалось бы, открывается путь для рационального воспроизведения на стене или на полотне чувственного мира, ибо перспектива служит средством установить пропорциональные соотношения, а тем самым рационально упорядочить изображаемую реальность. Это и привлекает к ней художников раннего кватроченто. Но вместе с тем перспектива всегда влечет за собой зрительную иллюзию, и здесь художник оказывается иллюзионистом. Какая ирония: с помощью геометрии (она же - перспектива) он, к собственному восхищению, получает средство овладения миром, но тут же на глазах обнаруживается, что он владеет только мнимостью вместо реальности, что, вообразив себя Богом и Творцом, он в действительности оказался творцом фантомов!
Как живопись XV-XVI вв. обращается к перспективе, так наука этого периода - к геометрии. Здесь центральной фигурой оказывается именно Галилей. Стремление поставить на место физики Аристотеля, построенной на основе принципов разума, механику, которая по замыслу Галилея была бы чем-то вроде геометрии физического мира, приводит Галилея к тому же противоречию, на которое натолкнулись и художники: он хочет создать науку как объяснение природных феноменов, а в действительности наука превращается у него в описание процессов изменения этих феноменов. Построенная на базе геометрии, механика Галилея требует оставаться в мире явлений: ее реальным предметом оказывается установление функциональной зависимости между явлениями, т.е. установление закона природы. Аналогично тому, как изображение на картине Леонардо организуется с помощью пространства, функциональные зависимости между различными явлениями в механике Галилея устанавливаются с помощью времени. Но ни там ни здесь не предполагается обращение к умопостигаемым сущностям. Подобно художникам кватроченто, Галилей хотел бы опереться на геометрию, но при этом избежать связанного с ней иллюзионизма.
Посмотрим, однако, конкретно, как происходит у Галилея перестройка принципов средневековой физики.
4. Причина и закон в механике Галилея
Есть у Галилея рассуждение, весьма существенное для понимания его подхода к изучению движения свободного падения тел. Выслушав Сальвиати, описавшего, каким образом движется тело, брошенное вверх, его собеседник Сагредо замечает: "Мне кажется, что это рассуждение дает достаточные основания для ответа на возбуждаемый философами вопрос о причинах ускорения естественного движения тяжелых тел. Рассматривая тело, брошенное вверх, я нахожу, что мощь, сообщенная ему бросающим, постепенно уменьшается и поднимает тело до тех пор, пока она превосходит противодействующую мощь тяжести; но, как только они уравновешиваются, тело перестает подниматься и проходит через состояние покоя, при котором первоначально сообщенный импульс вовсе не уничтожается, а только погашен первоначальный излишек его над весом тела, каковой заставлял тело двигаться вверх. Так как уменьшение этого стороннего импульса продолжается, следствием чего является перевес тяжести, то начинается обратное движение или падение тела, происходящее вначале медленно, вследствие противодействия сообщенной телу мощи, значительная часть которой еще сохраняется в нем; но так как эта последняя постепенно уменьшается и все в большей и большей степени преодолевается тяжестью, то отсюда и возникает постепенное ускорение движения".
Сагредо, как видно из дальнейшего, излагает здесь собственные соображения Галилея, с помощью которых он вполне в духе физики импето первоначально надеялся дать причинное объяснение метательного движения. Однако сам же Галилей показывает далее, почему он вынужден был оставить этот способ объяснения. Аристотелик Симпличио возражает Сагредо, указывая на то, что таким путем можно объяснить лишь насильственное движение вверх, но невозможно объяснить ускорение тела, которое не подбрасывается вверх, а падает с определенной высоты, выходя при этом из состояния покоя. И хотя Сагредо отвергает аргументы Симпличио, тем не менее сам Галилей - Сальвиати, стремясь преодолеть принципиальное для физики импето различение естественного и насильственного движений, следующим образом разрешает спор своих собеседников: "Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений; одни приписывали его приближению к центру, другие - постепенному частичному уменьшению сопротивляющейся среды, третьи - некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло бы мало пользы. Сейчас для нашего Автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения), приняв, что моменты скорости, начиная с перехода к движению от состояния покоя, идут, возрастая в том же простейшем отношении, как и время... Если окажется, что свойства, которые будут доказаны ниже, справедливы и для движения естественно и ускоренно падающих тел, то мы сможем сказать, что данное нами определение охватывает и указанное движение тяжелых тел и что наше положение о нарастании ускорения в соответствии с нарастанием времени, т.е. продолжительностью движения, вполне справедливо".
Высказанный здесь тезис о том, что не обязательно искать причину ускорения падающих тел, что важнее найти закон, описывающий ускорение, и есть аналог тому, что мы наблюдали в живописи. В результате многолетних поисков Галилей приходит к выводу, что для механики существеннее установить закон, описывающий процесс падения тел, т.е. описывающий, как ведет себя явление, нежели устанавливать умопостигаемую его сущность, как это стремилась делать физика импетуса, да и вообще физика в рамках перипатетической программы.
Подобно тому, как художник XVI в. изображает чувственно данные явления, стремясь с помощью правил перспективы найти способ их упорядочения на холсте, он больше не стремится видеть в явлении лишь внешнюю оболочку, отсылающую к другой, умопостигаемой реальности. Художник находит средство упорядочения чувственно данного с помощью пространства и его геометрических законов, точнее говоря, с помощью правил измерения пространственных соотношений предметов в зависимости от расположения их по отношению к глазу художника (и соответственно зрителя). Ученый же, в данном случае Галилей, находит способ упорядочивающего описания природного процесса с помощью времени: не случайно он говорит о "сродстве понятий времени и движения". И вот им найден закон, т.е. способ упорядочения явления без обращения к умопостигаемой причине, - закон свободного падения тел: "Равномерно или единообразно ускоренным движением называется такое, при котором после выхода из состояния покоя в равные промежутки времени прибавляются равные промежутки скорости".
Тут, однако, может возникнуть законный вопрос: не является ли галилеево стремление к установлению закона движения вместо обнаружения его умопостигаемой причины продолжением математической традиции античной и средневековой науки, которая не претендовала на раскрытие сущности движения? Такая мысль кажется тем более соблазнительной, что эта традиция близка к платонизму, чем и подтверждается тезис о платонизме Галилея. Так, астрономия со времен Евдокса - от Птолемея и до Коперника - руководствовалась так называемым принципом "спасения явлений": она рассматривала свои теории как удобные математические фикции, из которых следует предпочесть те, что наиболее хорошо согласуются с наблюдаемыми фактами ("спасают явления"). Этот принцип базировался на характерном для античной (и близкой к ней средневековой) науки различении математического и физического подходов: математик может сконструировать модель, с помощью которой можно описать движение небесных тел, но его конструкция не претендует на раскрытие реальных причин этого движения; такое объяснение, как полагали древние и средневековые астрономы, может дать лишь физика, а не математика. Разделение физики как науки, объясняющей причины, и математики как науки, конструирующей гипотезы для "спасения явлений", базировалось еще на одной предпосылке, а именно на убеждении, что астрономия, в которой как раз и применяются математические фикции, всегда имеет дело с приборами, а потому ее выводы лишь приблизительны.
Однако эти аргументы Галилей как раз и оспаривает. Что касается приблизительности небесной механики и механики вообще, то этот вопрос для Галилея центральный: в своих сочинениях он неоднократно подчеркивает абсолютную точность своих экспериментов. А вместе с тем он отвергает и другой аргумент, связанный с разведением физики и математики. Оба эти аргумента внутренне связаны: коль скоро в эксперименте можно достигнуть той же точности, как и в математическом доказательстве, то нет больше необходимости искать другого способа познания физического мира, нежели тот, который дает математика.
Таким образом, сближая математический объект с объектом физическим, преобразованным с помощью эксперимента, настаивая на необходимости иметь дело с идеализованными объектами, а не объектами эмпирического мира, Галилей сразу решает целый ряд проблем.
Во-первых, он снимает различие между физикой как наукой, объясняющей причины движения, и математикой как наукой, позволяющей описать это движение, т.е. сформулировать его закон. Во-вторых, устраняет принципиальное различие между математикой и физикой как науками и механикой как искусством. В-третьих, отменяет традиционное представление о том, что математика - это наука о неизменных сущностях, и тем самым кладет начало новому роду математики, способному как раз описывать движение и изменение, устанавливать законы изменения. В-четвертых, ставит вопрос о том, что для физика важнее установить закон, описывающий процесс изменения явлений, чем искать умопостигаемые причины последних.
Условием возможности решения всех этих проблем является у Галилея эксперимент, который представляет собой идеализированный опыт, или материализацию математической конструкции. И вся эта революция в принципах покоится на допущении, что сущность физического мира - математическая, а потому правомерна математизация природной реальности. Стало быть, у Галилея речь идет уже не просто о "спасении явлений", как у Птолемея; у него уже нет "зазора" между физическим опытом и математической теорией: математическая конструкция у Галилея не просто "спасает явления", но выражает саму их сущность. Однако поскольку эмпирическая картина движения тел сильно отличается от математической конструкции, то ученый должен создать особое, идеализованное тело или систему тел. Такая система создается в эксперименте, где, по верному замечанию А.В. Ахутина, вещи ставятся в особые - предельные - условия. Именно эксперимент есть та идеальная конструкция, где по замыслу должны совпасть математика и физика. В эксперименте все внешние препятствия и случайные воздействия устранены, наклонные плоскости абсолютно тверды и гладки, движущееся тело имеет совершенно правильную геометрическую форму шара, какой реальное физическое тело никогда не может иметь, и т.д. "Наличие идеализованного предмета открывает возможность ограничиться одним-единственным, специально сконструированным реальным опытом, результат которого имеет теперь уже непосредственно теоретическое значение".
Однако у нас пока остался нерешенным еще один вопрос. Если мы сравниваем механику Галилея с перспективистской живописью, то где же у Галилея то "отнесение к субъекту", которое мы видели у Пьеро делла Франческа и Леонардо да Винчи? Не является ли наша аналогия слишком смелой? "Отнесение к субъекту" мы находим в самом сердце галилеевой механики, а именно в допущении - в пределе - совпадения реального физического процесса с умственной конструкцией. Не случайно Галилей прилагает так много усилий, чтобы доказать, что его эксперименты были абсолютно точными, что нужно только устранить все помехи и провести эксперимент в чистоте, чтобы убедиться в полной справедливости установленного с его помощью закона. Некоторые современные историки и философы науки, например П. Фейерабенд, видят своеобразную "заслугу" Галилея в том, что в своих экспериментах он прибегал к различным уловкам и ухищрениям, видя особый "революционный" смысл в его научной недобросовестности.
Но, на наш взгляд, действительный смысл того, что Фейерабенд отнес за счет недобросовестности Галилея, гораздо адекватнее понял Иммануил Кант. "Ясность для всех естествоиспытателей возникла тогда, когда Галилей стал скатывать с наклонной плоскости шары с им самим избранной тяжестью, когда Торричелли заставил воздух поддерживать вес, который, как он заранее предвидел, был равен весу известного ему столба воды, или когда Шталь в еще более позднее время превращал металлы в известь и известь обратно в металлы, что-то выделяя из них или вновь присоединяя к ним". Принцип механики Галилея, таким образом, состоит в том, что он предложил приписывать вещи только то, что необходимо следует из вложенного в нее нами самими.
Можно спорить с Кантом, когда он в том же духе толкует и античную математику. Но что касается истолкования метода Галилея, то тут Кант справедливо указывает конструктивистский принцип последнего. Именно в этом отождествлении реальности с умственной конструкцией состоит специфический феноменализм Галилея; тенденция Галилея к установлению не причины, а закона явлений внутренне связана с его конструктивистским принципом.
5. Изменение понятия материи
Переворот, произведенный Галилеем, не мог осуществиться без переосмысления понятий, разработанных в античных научных программах, и прежде всего понятий материи и пространства. Античное понятие материи находилось в противоречии с фундаментальной конструкцией Галилея -"математическим", или "идеальным", телом. В самом деле, материя у древних - как в платоновской, так и в аристотелевской школах - представляла собой начало изменчивости, неустойчивости, текучести. Как же в такой материи можно было "воплотить" математическую конструкцию? Галилей хорошо сознавал это противоречие, он понимал, что для создаваемой им механики античное и средневековое понятие материи было непригодно.
Античное и средневековое понятие материи как раз полагало непереходимую пропасть между математической конструкцией и физическим объектом. Вот характерное высказывание на этот счет аристотелика Симпличио: "В конце концов, эти математические тонкости, синьор Сальвиати, истинны абстрактно, в приложении же к чувственной и физической материи они не оправдываются. Так, например, пусть математики доказывают на основании своих принципов, что sphaera tangit planum in puncto... но, как только дело дойдет до материи, все происходит иначе..."
Сознавая, что тут идет речь о кардинальных вопросах, Галилей предлагает переосмыслить античное понятие материи. Обсуждая вопрос о возможностях воплощения в материале идеальных конструкций, Галилей отвергает как неосновательное утверждение, что "многие изобретения в машинах удаются в малом, но не применимы в большом". В основе этого распространенного в XVI в. мнения лежал не столько опыт, сколько теоретическое соображение, что механическая конструкция тем ближе к своей геометрической модели, чем меньше в ней материи. "Общераспространенное мнение, - говорит Сальвиати - Галилей, - совершенно ложно, настолько ложно, что скорее можно было бы утверждать как истину противное, а именно что многие машины можно сделать более совершенными большего размера, нежели меньшего... Большей основательностью отличается сходное мнение людей образованных, которые причину различной успешности таких машин, не находящую себе объяснения в чистых и абстрактных положениях геометрии, видят в несовершенстве материи, подверженной многим изменениям и недостаткам. Но, думается, я могу... сказать, что одного несовершенства материи, могущего извратить все выводы чистейшей математики, недостаточно для объяснения несоответствия построенных машин машинам отвлеченным и идеальным. Смею утверждать, что если мы, отвлекшись от всякого несовершенства материи и предположив таковую неизменяемой и лишенной всяких случайных недостатков, построим большую машину из того же самого материала и точно сохраним все пропорции меньшей, то в силу самого свойства материи мы получим машину, соответствующую меньшей во всех отношениях, кроме прочности и сопротивляемости внешнему воздействию... Так как я предполагаю, что материя неизменяема, т.е. постоянно остается одинаковой, то ясно, что такое вечное и необходимое свойство может вполне быть основой для чисто математических рассуждений". Как видим, создание математической физики требовало переосмысления понятия материи. У Галилея материя предстает как всегда себе равная, самотождественная, неизменная, т.е. получает характеристику, которую Платон давал умопостигаемому бытию - идее, а Аристотель - форме. Это еще одно свидетельство того, что галилеева механика не есть возвращение к математической программе античности. И Койре был неправ, заявив, что механика Галилея представляет собой реализацию платоновской научной программы, - не случайно позднее он скорректировал свой тезис, что механика Галилея - результат союза Демокрита с Платоном. Но и эта формула нуждается в оговорках.
Информация о работе История новоевропейской философии в ее связи с наукой