Автор работы: Пользователь скрыл имя, 09 Февраля 2014 в 17:12, реферат
Принцип относительности – фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.
Введение…………………………………………………………………2
I. Предпосылки создания теории относительности А.Эйнштейна
1.1. Относительность движения по Галилею…………………………………………………………………..4
1.2. Принцип относительности и законы Ньютона………………………………………………………………….7
1.3. Преобразования Галилея………………………………………………………………….10
1.4. Принцип относительности в электродинамики……………………………………………………….11
Заключение……………………………………………………………...12
Список используемой литературы
Содержание
Введение…………………………………………………………
1.1. Относительность движения по Галилею……………………………………………………………
1.2. Принцип относительности и законы Ньютона……………………………………………………………
1.3. Преобразования Галилея……………………………………………………………
1.4. Принцип относительности в электродинамики………………………………………
Заключение……………………………………………………
Список используемой литературы…………………………………….14
Введение
Принцип относительности –
Инерциальная система –
«Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» – так Ньютон сформулировал закон, который сейчас называется первым законом механики Ньютона, или законом инерции.
Система отсчета, в которой справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения, – называется инерциальной. Всякая система отсчета, движущаяся по отношению к ней поступательно, равномерно и прямолинейно, есть также инерциальная.
Теория относительности –
Существует фактически две различных
теории относительности, известных
в физике, одна из них называется
специальной (частной) теорией относительности,
другая – общей теорией
1.1. Относительность движения по Галилею
Одним из первых, кто серьезно задумался
над принципом относительности
Он писал: "…в каюте корабля, движущегося
равномерно и без качки, вы не обнаружите
ни по одному из окружающих явлений, ни
по чему-либо, что станет происходить с
вами самими, движется ли корабль или стоит
неподвижно".
Переводя на сегодняшний язык, понятно, что если вы спите на 2-й полке движущегося равномерно вагона, то вам трудно понять, едете ли вы или просто вас покачивает. Но… как только поезд затормозит (неравномерное движение с отрицательным ускорением!) и вы слетите с полки, …то вы четко скажете – мы ехали.
Принцип относительности:
Для двух наблюдателей, движущихся друг относительно друга равномерно и прямолинейно, наблюдаемые ими движения (с учетом разницы в начальных условиях) одинаковы.
Невозможно определить, находимся ли мы в состоянии покоя или в состоянии равномерного движения . Это означает, что не существует выделенной, привилегированной системы отсчета
Важную роль в создании научной картины мира сыграл принцип относительности одного из основоположников современного естествознания Галилея – принцип равноправия всех инерциальных систем отсчета в классической механике, который утверждает, что никакими механическими опытами, проводящимися в какой-то инерциальной системе отсчета, нельзя определить, покоится данная система или движется равномерно и прямолинейно.
Математически принцип относительности Галилея выражает инвариантность уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы отсчета к другой – преобразований Галилея.
Впервые положение об относительности механического движения было высказано Галилео Галилеем в 1638 г. в его труде «Диалог о двух основных системах мира – птоломеевой и коперниковой». Там же сформулирован один из фундаментальных принципов физики – принцип относительности. Галилей использовал наглядный и образный метод изложения. Он писал, что находясь «в помещении под палубой корабля» и проводя опыты и наблюдения над всем, что там происходит, нельзя определить, покоится ли корабль, или же он движется «без толчков», то есть равномерно и прямолинейно. При этом подчеркивались два положения, составляющие суть принципа относительности:
1) движение относительно: по отношению к наблюдателю «в помещении под палубой» и к тому, кто смотрит с берега, движение выглядит по-разному;
2) физические законы, управляющие
движением тел в этом
Таким образом, Галилей сделал вывод, что механическое движение относительно, а законы, которые его определяют, абсолютны, то есть безотносительны. Эти положения коренным образом отличались от общепринятых в то время представлений Аристотеля о существовании «абсолютного покоя» и «абсолютного движения».
Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три «аксиомы» – три знаменитых закона Ньютона. В 1667 г. Ньютон сформулировал три закона динамики, составляющие основной раздел классической механики. Законы Ньютона играют исключительную роль в механике и являются (как и большинство физических законов ) обобщением результатов огромного человеческого опыта, о чем сам Ньютон образно сказал: "Если я видел дальше других, то потому, что стоял на плечах гигантов". Законы Ньютона рассматривают обычно как систему взаимосвязанных законов .
Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.
Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью, или инерцией. Поэтому первый закон Ньютона называют также законом инерции.
Для количественной формулировки второго закона динамики вводятся понятия ускорения а, массы тела т и силы F. Ускорением характеризуется быстрота изменения скорости движения тела. Масса тела - физическая величина - одна из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (тяжелая или гравитационная масса) свойства. Сила - это векторная величина, мера механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.
Второй закон Ньютона : ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела):
а = F / т
Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенства нулю равнодействующих сил (при отсутствии воздействия на тело со стороны других тел) ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон , а не как следствие второго закона , так как именно он утверждает существование инерциальных систем отсчета.
Взаимодействие между
F12 = - F21
где F12 - сила, действующая на первую материальную точку со стороны второй; F21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы. Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек , характеризующихся парным взаимодействием.
Законы Ньютона позволяют решить многие задачи механики - от простых до сложных. Спектр таких задач значительно расширился после разработки Ньютоном и его последователями нового для того времени математического аппарата - дифференциального и интегрального исчисления, весьма эффективного при решении многих динамических задач и особенно задач небесной механики.
1.3. Преобразования Галилея
Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий «фон», на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат x, у, z, зависящих от времени t. При переходе из одной инерциальной системы отсчета К в другую К', движущуюся по отношению к первой вдоль оси x со скоростью v, координаты преобразуются: x' = x - vЧt, y' = у, z' = z, а время остается неизменным: t' = t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея.
По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой «геометрической» картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.
Принцип относительности Галилея более трехсот лет относили только к механике, хотя в первой четверти 19 в., прежде всего благодаря трудам М.Фарадея, возникла теория электромагнитного поля, получившая затем дальнейшее развитие и математическую формулировку в работах Дж.К. Максвелла. Но перенос принципа относительности на электродинамику представлялся невозможным, так как считалось, что все пространство заполнено особой средой – эфиром, натяжения в котором и истолковывались как напряженности электрического и магнитного полей. При этом эфир не влиял на механические движения тел, так что в механике он «не чувствовался», но на электромагнитных процессах движение относительно эфира («эфирный ветер») должно было сказываться. В результате находящийся в закрытой кабине экспериментатор при помощи наблюдения над такими процессами мог, казалось, определить, находится ли его кабина в движении (абсолютном!), или же она покоится. В частности, ученые полагали, что «эфирный ветер» должен влиять на распространение света. Попытки обнаружить «эфирный ветер», однако, не увенчались успехом, и концепция механического эфира была отвергнута, благодаря чему принцип относительности как бы родился заново, но уже как универсальный, справедливый не только в механике, но и в электродинамике, и других областях физики.
Заключение
Теория относительности А.
Информация о работе Предпосылки создания теории относительности А.Эйнштейна