Рождение классической науки

Автор работы: Пользователь скрыл имя, 24 Мая 2015 в 17:39, реферат

Краткое описание

Наука в ее современном понимании является принципиально новым фактором в истории человечества. Как своеобразная форма познания - специфический тип духовного производства и социальный институт - наука возникла в Европе, в Новое время, в XVI-XVII вв., в эпоху становления капиталистического способа производства и дифференциации (разделения) единого ранее знания на философию и науку. Она (сначала в форме естествознания) начинает развиваться относительно самостоятельно.

Содержание

Введение. Возникновение науки…………………………………………….3
1.Периодизация науки………………………………………………………..5
2.Развитие классической науки……………………………………………...8
3.Неклассическая наука……………………………………………………..13
4.История естествознания как смена научных парадигм…………………15
Заключение……………………………………………………………….….17
Список литературы………………………………………………………….18

Вложенные файлы: 1 файл

реферат по философии.docx

— 38.27 Кб (Скачать файл)

Механическая картина мира сыграла во многом положительную роль, дав естественнонаучное понимание многих явлений природы. Таких представлений придерживались практически все выдающиеся мыслители XVII в. - Галилей, Ньютон, Лейбниц, Декарт. Для их творчества характерно построение целостной картины мироздания. Учеными не просто ставились отдельные опыты, они создавали натурфилософские системы, в которых соотносили полученные опытным путем знания с существующей картиной мира, внося в последнюю необходимые изменения. Без обращения к фундаментальным научным основаниям считалось невозможным дать полное объяснение частным физическим явлениям. Именно с этих позиций начинало формироваться теоретическое естествознание, и в первую очередь - физика.

К середине XIX века авторитет классической механики возрос настолько, что она стала считаться эталоном научного подхода в естествознании. Широта охвата явлений природы, однозначная определенность (детерминизм) выводов, характерные для механики Ньютона, были настолько убедительны, что сформировалось своеобразное мировоззрение, в соответствии с которым механистический подход следует применять ко всем явлениям природы, включая физиологические и социальные, и что надо только определить начальные условия, чтобы проследить эволюцию природы во всем ее многообразии. Это мировоззрение часто называют "детерминизмом Лапласа", в память о великом французском ученом П-С. Лапласе, внесшем большой вклад в небесную механику, физику и математику.

Очень образно об этом сказал сам Лаплас: "Ум, которому были бы известны для какого-либо момента времени все силы, одушевляющие природу, обнял бы в одной формуле движение величайших тел Вселенной наравне с движением атомов. И будущее, также как и прошедшее предстало бы перед его взором".

После этого, в конце XIX в., большинство ученых считало, что создание полной и окончательной естественнонаучной картины мира практически завершено. Все явления природы, в соответствии с этой картиной мира, являются следствием электромагнитных и гравитационных взаимодействий между зарядами и массами, которые приводят к однозначному, полностью определенному начальными условиями поведению тел (концепция детерминизма). Критериями истинности в такой картине мира являются, с одной стороны, эксперимент ("практика - критерий истины"), а с другой стороны - однозначный логический вывод (с XVII века, как правило, математический) из более общих посылок (дедукция). Отметим здесь также, что одним из главных методологических принципов классического естествознания являлась независимость объективных процессов в природе от субъекта познания, отделенность объекта от средств познания.

Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов.

3.Неклассическая наука

 

Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века - М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, но по истине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности.

Что же принципиально нового в понимании природы принесло с собой неклассическое естествознание?

1. Прежде всего, следует  иметь в виду, что решающие  шаги в становлении новых представлений  были сделаны в области атомной  и субатомной физики, где человек  попал в совершенно новую познавательную  ситуацию. Те понятия (положение  в пространстве, скорость, сила, траектория  движения и т.п.), которые с успехом  работали при объяснении поведения  макроскопических природных тел, оказались неадекватными и, следовательно, непригодными для отображения  явлений микромира. И причина  этого заключалась в том, что  исследователь непосредственно  имел дело не с микрообъектами  самими по себе, как он к  этому привык в рамках представлений  классической науки, а лишь с "проекциями" микрообъектов на макроскопические "приборы".

2. Второй особенностью  неклассического естествознания  является преобладание же упомянутого  вероятностно-статистического подхода  к природным явлениям и объектам, что фактически означает отказ  от концепции детерминизма. Переход  к статистическому описанию движения  индивидуальных микрообъектов было, наверное, самым драматичным моментом  в истории науки, ибо даже основоположники  новой физики так и не смогли  смириться с онтологической природой  такого описания ("Бог не играет  в кости", - говорил А. Эйнштейн), считая его лишь временным, промежуточным  этапом естествознания.

3. Далеко за рамки естествознания  вышла сформулированная Н. Бором  и ставшая основой в неклассической  физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.

4. Для неклассического  естествознания характерно объединение  противоположных классических понятий  и категорий. Например, в современной  науке идеи непрерывности и  дискретности уже не являются  взаимоисключающими, а могут быть  применены к одному и тому  же объекту, в частности, к физическому  полю или к микрочастице (корпускулярно-волновой  дуализм). Другим примером может  служить относительность одновременности: события, одновременные в одной  системе отсчета, оказываются неодновременными  в другой системе отсчета, движущейся  относительно первой.

5. Произошла в неклассической  науке и переоценка роли опыта  и теоретического мышления в  движении к новым результатам. Прежде всего, была зафиксирована  и осознана парадоксальность  новых решений с точки зрения "здравого смысла". В классической  науке такого резкого расхождения  науки со здравым смыслом не  было. Основным средством движения  к новому знанию стало не  его построение снизу, отталкиваясь  от фактической, эмпирической стороны  дела, а сверху.

Начиная с Вебера намечается тенденция на сближение естественных и гуманитарных наук, что является характерной чертой постнеклассического развития науки.

 

 

 

4.История естествознания как смена научных парадигм

 

Вплоть до последнего времени развитие науки обычно рассматривалось как постепенный процесс накопления знаний, при котором факты, теории, методы исследований слагаются во все возрастающей запас достижений. Однако, то, что далеко не все из прошлого науки выдерживает испытание временем и сохраняет актуальность, свидетельствует не столько о монотонном накоплении, сколько о постоянном переосмыслении накапливаемой информации, ревизии достигнутых результатов, смене приоритетов и направлений научного поиска. Понимание этого привело в начале 60-х годов нашего века к появлению нового подхода к вопросу о сущности и закономерностях прогресса в науке, который базируется на представлении о скачкообразной смене основных концептуальных схем, моделей постановки проблем и их решений - того, что обычно понимают под термином парадигма. Автор этого подхода, американский историк и философ Т. Кун, впервые обратил внимание на чередование определенных фаз познавательной активности, которые характерны как для узких областей знания, так и для целых направления в науке. Большая часть исторического времени приходится, по его мнению, на период "нормальной" науки, которая представляет собой в высшей степени кумулятивный (накопительный) процесс, направленный на постоянное расширение научного знания и его уточнение в рамках общепринятой парадигмы. Образно выражаясь, на этом этапе природу как бы пытаются "втиснуть" в парадигму как в заранее сколоченную и довольно тесную "коробку". Другими словами, парадигма является для "нормальной" науки и критерием истины, и критерием научности, и критерием значимости, в соответствии с которым определяются приоритетные направления исследований. Все, что не вписывается в парадигму, объявляется ненаучным и не заслуживающим внимания членов научного сообщества. В качестве примеров можно упомянуть корпускулярную парадигму в ньютоновской оптике (свет - поток частиц) и впоследствии сменившую ее волновую парадигму в классической теории электромагнетизма (свет - волна).

По мере углубления и расширения фронта научных исследований в рамках "нормальной" науки, совершенствования научных средств и методов, в поле зрения ученых все чаще попадают факты, не вписывающиеся в общепринятую парадигму. Если в начале эти факты ("аномалии") после попыток "привязать" их к парадигме, объявляются неактуальными (иногда их даже лишают статуса научности), то после того, как информация об "аномалиях" набирает "критическую массу", происходит научная революция, сопровождающаяся не просто уточнением или переосмыслением старой парадигмы, а переходом на новую парадигму, для которой характерен принципиально новый взгляд на природу. В этом смысле, например, ньютоновская масса m0 не является просто предельным значением релятивистской массы m = m0 / , при v ® 0, как об этом пишут в учебниках физики. Гораздо важнее то, что ньютоновская механика построена на концепции постоянной массы тел, в то время как в эйнштейновской теории относительности масса тела изменяется при изменении скорости движения.

Следует отметить, что рассмотренный подход к динамике научного знания пока еще находится в стадии развития и имеет немало критиков. В частности, до сих пор нет единого мнения о том, с какого "минимального" уровня (наука в целом, разделы науки, области знания, отдельные научные проблемы) уместно вводить понятие парадигмы. Например, относится ли флогистонная и кислородная теория горения к разным химико-физическим концепциям или же эти теории принадлежат к разным парадигмам (как считает Т. Кун).

Иной подход к явлениям природы характерен для эволюционной парадигмы. В соответствии с ней динамика процессов в природе имеет непредсказуемый, уникальный характер.

 

 

 

 

Заключение

 

Наука занимает свое достойное место как сфера человеческой деятельности, главнейшей функцией которой является выработка и систематизация объективных знаний о действительности. Она есть одна из форм общественного сознания, направленная на предметное постижение мира, предполагающая получение нового знания. Цель науки всегда была связана с описанием, объяснением и предсказанием процессов и явлений действительности на основе открываемых ею законов. Система наук условно делится на естественные, общественные и технические. Считается, что объем научной деятельности, рост научной информации, открытий, числа научных работников удваивается в среднем примерно каждые 5-10 лет. А в развитии науки чередуются нормальные и революционные периоды, так называемые научные революции, которые приводят к изменению ее структуры, принципов познания, категорий, методов и форм организации.

Одна из наиболее интересных проблем внешней истории состоит в том, чтобы уточнить психологические и, конечно, социальные условия, необходимые (но, конечно, всегда недостаточные) для научного прогресса, однако в самой формулировке этой “внешней” проблемы должна принимать участие некоторая методологическая теория, некоторое определение науки. История науки есть история событий, выбранных и интерпретированных некоторым нормативным образом. И если это так, то проблема оценки конкурирующих логик научного исследования и, следовательно, конкурирующих реконструкций истории - проблема, на которую до сего времени не обращали внимания, — приобретает первостепенное значение.

Задачей философии науки было определить принципы рационального исследовательского поведения, принципа опираясь на которые, можно приобрести какие-то знания обо всей действительности; дать науке теоретическую основу для рациональных действий.

 

Список литературы

 

1. ИСТОРИЯ НАУКИ Кохановский В.П., Золотухина Е.В., Лешкевич Т.Г., Фатхи Т.Б. Философия для аспирантов: Учебное пособие. Изд. 2-е - Ростов н/Д: "Феникс", 2010. - 448 с.

2. Степин В.С. С79 Философия науки. Общие проблемы: учебник для аспирантов и соискателей ученой степени кандидата наук / В.С. Степин. – М.: Гардарики, 2006. – 384с.

3. Лешкевич Т.Г. «Философия науки: традиции и новации» М.:ПРИОР,2001

4. Спиркин А.Г. Философия. Учебник. М., 2009. Гл. XII

5. Алексеев П.В., Панин  А.В. Философия. Учебник. М., 2006.

6. Краткая философская  энциклопедия. М., 2008.

7. Структура развития  науки. Из Бостонских исследований  по философии науки. М., 2004. С. 170-190.

8. 1. Алексеев П.В., Панин А.В. Философия: Учебник для ВУЗов. - М.: ТЕИС, 2006. - 504 с.

9. История философии в кратком изложении. - М., 2008. - 000 с.

10. Радугин А.А. Философия: Курс лекций. - М.: Владос, 2006. - 304 с.

 

 

 


Информация о работе Рождение классической науки