Автор работы: Пользователь скрыл имя, 02 Ноября 2013 в 22:50, курсовая работа
Галогены (от греч. halos - соль и genes - рождающий, рождённый) находятся в главной подгруппе VII группы периодической системы химических элементов.
К галогенам относят фтор, хлор, бром, иод и астат.
На наружном энергетическом уровне атомов галогенов находятся семь электронов:до восьми электронов (октета) на наружном энергетическом уровне, т.е. до устойчивого состояния атомов, характерного для благородных газов, атомам галогенов недостаёт по одному электрону. К тому же атомы галогенов по сравнению с атомами металлов того же периода обладают большим зарядом ядра, меньшим атомным радиусом и имеют по одному неспаренному электрону.
2.2.3 Бром
35 |
Бром |
Br 79,904 | |
3d104s24p5 |
Бром (от др.-греч. βρῶμος «вонючка», «вонючий») — элемент 7-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VII группы), четвёртого периода, с атомным номером 35. Обозначается символом Br (лат. Bromum). Химически активный неметалл, относится к группе галогенов. Простое вещество бром (CAS-номер: 7726-95-6) при нормальных условиях — тяжёлая жидкость красно-бурого цвета с сильным неприятным запахом. Молекула брома двухатомна (формула Br2 Бром (лат. Bromum), Br - химический элемент VII группы периодической системы Менделеева, относится к галогенам, атомный номер 35, атомная масса 79,904; красно-бурая жидкость с сильным неприятным запахом. (2)Бром открыт в 1826 французским химиком А. Ж. Баларом при изучении рассолов средиземноморских соляных промыслов; назван от греческого bromos - зловоние. Природный бром состоит из 2 стабильных изотопов 79Br (50,34%) и 81Br (49,46%). Из искусственно полученных радиоактивных изотопов брома наиболее интересен 80Вr, на примере которого И. В. Курчатовым открыто явление изомерии атомных ядер.[4]
Содержание брома в земной коре (1,6*l0-4% по массе) оценивается в 1015-1016 т. В главной своей массе бром находится в рассеянном состоянии в магматических породах, а также в широко распространённых галогенидах. Бром - постоянный спутник хлора. Бромистые соли (NaBr, KBr, MgBr2) встречаются в отложениях хлористых солей (в поваренной соли до 0,03% Br, в калийных солях - сильвине и карналлите - до 0,3% Вr), а также в морской воде (0,065% Br), рапе соляных озёр (до 0,2% Br) и подземных рассолах, обычно связанных с соляными и нефтяными месторождениями (до 0,1% Br). Благодаря хорошей растворимости в воде бромистые соли накопляются в остаточных рассолах морских и озёрных водоёмов. Бром мигрирует в виде легко растворимых соединений, очень редко образуя твёрдые минеральные формы, представленные бромиритом AgBr, эмболитом Ag (Сl, Br) и иодэмболитом Ag (Сl, Вr, I). Образование минералов происходит в зонах окисления сульфидных серебросодержащих месторождений, формирующихся в засушливых пустынных областях.[11]
При -7,2°С жидкий бром застывает, превращаясь в красно-коричневые игольчатые кристаллы со слабым металлическим блеском. Пары брома жёлто-бурого цвета, tкип 58,78°С. Плотность жидкого брома (при 20°С) 3,1 г/см3. В воде бром растворим ограниченно, но лучше других галогенов (3,58 г брома в 100 г Н2О при 20°С). Ниже 5,84°С из воды осаждаются гранатово-красные кристаллы Br2*8H2O. Особенно хорошо растворим бром во многих органических растворителях, чем пользуются для извлечения его из водных растворов. Бром в твердом, жидком и газообразном состоянии состо-ит из 2-атомных молекул. Заметная диссоциация на атомы начинается при температуре около 800°С; диссоциация наблюдается и при действии света.[10][8]
| |||||
Внешний вид простого вещества | |||||
Красно-бурая жидкость с сильным неприятным запахом | |||||
Свойства атома | |||||
Имя, символ, номер |
Бром / Bromum (Br), 35 | ||||
Атомная
масса |
79,904 а. е. м. (г/моль) | ||||
Электронная конфигурация |
[Ar] 3d10 4s2 4p5 | ||||
Химические свойства | |||||
Ковалентный радиус |
114 пм | ||||
Радиус иона |
(+5e)47 (-1e)196 пм | ||||
Электроотрицательность |
2,96 (шкала Полинга) | ||||
Электродный потенциал |
0 | ||||
Степени окисления |
7, 5, 3, 1, 0, -1 | ||||
Энергия
ионизации |
1142,0 (11,84) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) |
3,102 (25 °C) г/см³ | ||||
Температура плавления |
265,9 K | ||||
Температура кипения |
331,9 K | ||||
Теплота плавления |
(Br—Br) 10,57 кДж/моль | ||||
Теплота испарения |
(Br—Br) 29,56 кДж/моль | ||||
Молярная теплоёмкость |
75,69[1] Дж/(K·моль) | ||||
Молярный объём |
23,5 см³/моль | ||||
Кристаллическая решётка простого вещества | |||||
Структура решётки |
орторомбическая | ||||
Параметры решётки |
a=6,67 b=4,48 c=8,72 Å | ||||
Прочие характеристики | |||||
Теплопроводность |
(300 K) 0,005 Вт/(м·К) |
При обычных условиях бром — красно-бурая жидкость с резким неприятным запахом, ядовит, при соприкосновении с кожей образуются ожоги. Бром — одно из двух простых веществ (и единственное из неметаллов), наряду со ртутью, которое при комнатной температуре является жидким. Плотность при 0 °C — 3,19 г/см³. Температура плавления (затвердевания) брома −7,2 °C, кипения 58,8 °C, при кипении бром превращается из жидкости в буро-коричневые пары, при вдыхании раздражающие дыхательные пути. Стандартный электродный потенциал Br2/Br− в водном растворе равен +1,065 В.[2][3]
Бром и его пары сильно токсичны. Уже при содержании брома в воздухе в концентрации около 0,001 % (по объёму) наблюдается раздражение слизистых оболочек, головокружение, носовые кровотечения, а при более высоких концентрациях — спазмы дыхательных путей, удушье. ПДК паров брома 0,5 мг/м³. Летальная доза, при которой происходит гибель 50 % животных, при пероральном введении для крыс составляет 1700 мг/кг. Для человека смертельная доза перорально составляет 14 мг/кг. (источник — каталог фирмы MERCK). При отравлении парами брома пострадавшего нужно немедленно вывести на свежий воздух (как можно в более ранней стадии показаны ингаляции кислорода); для восстановления дыхания можно на небольшое время пользоваться тампоном, смоченным нашатырным спиртом, на короткое время периодически поднося его к носу пострадавшего. Дальнейшее лечение должно проводиться под наблюдением врача. Рекомендуются ингаляции тиосульфата натрия в виде 2 % водного раствора, обильное питьё теплого молока с минеральной водой или содой, кофе. Особенно опасно отравление парами брома людей, страдающих астмой и заболеваниями лёгких, так как при вдыхании паров брома очень высока вероятность отёка лёгких. Жидкий бром при попадании на кожу вызывает болезненные и долго не заживающие ожоги.[5][7]
Утечкой брома из железнодорожного вагона было вызвано чрезвычайное происшествие в городе Челябинске, вызвавшее отравление сотен жителей. Более 50 человек на следующий день лежали в больницах города с острым отравлением. Большинство — жители Ленинского района.[8]
2.2.4 Иод
Иод (лат. Iodium), I - химический элемент VII группы периодической системы Менделеева, относится к галогенам (в литературе встречается также символ J); атомный номер 53, атомная масса 126,9045; кристаллы черно-серого цвета с металлическим блеском. Природный иод состоит из одного стабильного изотопа с массовым числом 127. Иод открыл в 1811 французский химик Б. Куртуа. Нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение фиолетового пара (отсюда название иод - от греческого iodes, ioeides - похожий цветом на фиалку, фиолетовый), который конденсировался в виде темных блестящих пластинчатых кристаллов. В 1813 - 1814 французский химик Ж.Л. Гей-Люссак и английский химик Г. Дэви доказали элементарную природу иода.(7)
Среднее содержание иода в земной коре 4*10-5% по массе. В мантии и магмах и в образовавшихся из них породах (гранитах, базальтах) соединения иода рассеяны; глубинные минералы иода неизвестны. История иода в земной коре тесно связана с живым веществом и биогенной миграцией. В биосфере наблюдаются процессы его концентрации, особенно морскими организмами (водорослями, губками). Известны 8 гипергенных минералов иода, образующихся в биосфере, однако они очень редки. Основным резервуаром иода для биосферы служит Мировой океан (в 1 литре в среднем содержится 5*10-5 грамм иода). Из океана соединения иода, растворенные в каплях морской воды, попадают в атмосферу и переносятся ветрами на континенты. Местности, удаленные от океана или отгороженные от морских ветров горами, обеднены иодом. Иод легко адсорбируется органическими веществами почв и морских илов. При уплотнении этих илов и образовании осадочных горных пород происходит десорбция, часть соединений иода переходит в подземные воды. Так образуются используемые для добычи иода иодо-бромные воды, особенно характерные для районов нефтяных месторождений (местами 1 литр этих вод содержит свыше 100 мг иода).
Плотность иода 4,94 г/см3, tпл 113,5 °С, tкип 184,35 °С. Молекула жидкого и газообразного иода состоит из двух атомов (I2). Заметная диссоциация I2 2I наблюдается выше 700 °С, а также при действии света. Уже при обычной температуре иод испаряется, обра-зуя резко пахнущий фиолетовый пар. При слабом нагревании иод возгоняется, оседая в виде блестящих тонких пластинок; этот процесс служит для очистки иода в лабораториях и в промышленности. Иод плохо растворим в воде (0,33 г/л при 25 °С), хорошо - в сероуглероде и органических растворителях (бензоле, спирте), а также в водных растворах иодидов.
Пары иода ядовиты и раздражают
слизистые оболочки. На кожу иод
оказывает прижигающее и
2.2.5 Астат
Астат (лат. Astatium) - один из важнейших радиоактивных химических элементов в природе. Он относится к VII группе периодической системы Менделеева. Атомный номер - 85.[8]
У астата нет стабильных изотопов. Радиоактивных изотопов астата, открытых к данному времени около 20, все они очень неустойчивы. Наиболее долгоживущий 210At имеет период полураспада T 1/2 8,3 ч. Именно по этой причине в земном поверхностном слое (1,6 км), как показали расчеты, содержится 69 мг астата-218. Это очень мало.
Как чистый металл астат обладает уникальным свойством - возгоняется в молекулярной форме из водных растворов, такой способности нет ни у одного из известных элементов.
Астат легко испаряется как в обычных условиях, так и в вакууме. А также хорошо адсорбируется на металлах - Ag, Au, Pt.
Именно благодаря этим свойствам удается выделить астат из продуктов облучения висмута. Этого добиваются путем их вакуумной дистилляции с поглощением астата серебром или платиной (до 85%).[10]
2.2Химические свойства
1. Взаимодействие с металлами:
2Al + 3F2 = 2AlF3
Sn + Cl2 = SnCl2
2Fe + 3Cl2 = 2FeCl3
Cu + Br2 =CuBr2
Zn + I2 = ZnI2
2. Взаимодействие с водородом:
Cl2 + H2 = 2HCl
3. Взаимодействие с водой:
Cl2 + H2O = HCl + HClO
Хлорноватистая кислота
2Br2 + 2H2O = 4HF + O2.
4. Взаимодействие со щелочами:
Cl2 + 2KOH = KClO + KCl + H2O (без нагревания)
3Cl2 + 6KOH =KClO3 + 5KCl + 3H2O (с нагреванием)
5. Взаимодействие с галогенидами - соединениями галогенов с металлами:
фтор вытесняет из солей хлор, бром, йод:
F2 - самый сильный окислитель
из всех веществ:
1. 2F2 + 2H2 ® 4HF
2. H2 + F2 ® 2HF (со взрывом)
3. Cl2 + F2 ® 2ClF
2NaCl + F2 = 2NaF + Cl2
2KBr + F2 = 2KF + Br2
Хлор вытесняет из солей бром, йод:
2KBr + Cl2 = 2KCl + Br2
бром вытесняет из солей йод:
2KI + Br2 = 2KBr + I2v.
Галогены взаимодействуют со всеми классами органических соединений. Рассмотрим некоторые реакции:
1. С алканами:
CH3-CH3 + Cl2 =CH2Cl-CH3 + HCl
хлорэтан
2. С алкенами:
CH2=CH2 + Br2 = CH2Br-CH2Br
1,2-дибромэтан
3. С алкинами:
CHCH + Br2 = CHBr-CHBr
1,2-дибромэтен
2.2.1 Фтор
Фтор является моноизотопным элементом, так как в природе существует только один стабильный изотоп фтора 19F. Известны ещё 17 радиоактивных изотопов фтора с массовым числом от 14 до 31, и один ядерный изомер — 18Fm. Самым долгоживущим из радиоактивных изотопов фтора является 18F с периодом полураспада 109,771 минуты, важный источник позитронов, использующийся в позитрон-эмиссионной томографии.
Изотоп |
Относительная масса, а.е.м. |
Период полураспада |
Тип распада |
Ядерный спин |
Ядерный магнитный момент |
17F |
17,0020952 |
64,5 c |
β+-распад в 17O |
5/2 |
4.722 |
18F |
18,000938 |
1,83 часа |
β+-распад в 18O |
1 |
|
19F |
18,99840322 |
Стабилен |
— |
1/2 |
2.629 |
20F |
19,9999813 |
11 c |
β−-распад в 20Ne |
2 |
2.094 |
21F |
20,999949 |
4,2 c |
β−-распад в 21Ne |
5/2 |
|
22F |
22,00300 |
4,23 c |
β−-распад в 22Ne |
4 |
|
23F |
23,00357 |
2,2 c |
β−-распад в 23Ne |
5/2 |