Автор работы: Пользователь скрыл имя, 21 Апреля 2014 в 11:49, реферат
Производство полиуретанов (ПУ) представляет собой одну из наиболее динамично развивающихся отраслей промышленности. Такой интерес производителей ПУ прежде всего связан с возможностью получения разнообразных технически ценных материалов на их основе. Это монолитные эластомеры и пластики, вспененные материалы, волокна, клея, лаки, адгезивы и герметики. При этом на эластичные и жесткие пенополиуретаны (ППУ) приходится наибольший объем потребления, который составляет 75 % от всего выпуска [1].
Введение.
1. Утилизация и вторичная переработка отходов производства полиуретанов
1.1 Механическая переработка
1.2 Химическая переработка
2. Способ переработки полиуретановых отходов
3. Синтез полиуретанов: вторичные полиолы
Литература
- эластичного ППУ (ЭППУ) холодного формования, получаемого взаимодействием гидроксилсодержащего компонента марки "Эластофом А" на основе простого полиэфира окиси этилена и окиси пропилена Лапрола 5003 [3] и ТДИ при массовом соотношении 1.8: 1;
- жесткого ППУ (ЖППУ), получаемого взаимодействием гидроксилсодержащего компонента на основе простого полиэфира окиси пропилена Лапрола 564 и полиизоцианата при массовом соотношении 1: 1,1.
В качестве
деструктирующих агентов (ДА) использовались
гидроксилсодержащие соединения, входящие
в основной состав производственной композиции.
В случае СКУ-ОМ таковыми являлись смесь
ПЭБА и ОМ. Для разрушения ЭППУ использовали
смесь N,N,N’,N’ - тетрагидроксипропиленэтилендиа
Гликолиз проводили в колбе с перемешивающим устройством при температурах 120, 150 и 180 оС. В колбу загружали ДА, доводили температуру до заданного уровня и непрерывно вводили измельченный ПУ.
Химическая структура продуктов гликолиза исследовалась методом ИК-спектроскопии. ИК-спектры регистрировались в области 4000-400 см-1 на спектрометре Specord 75 IR. Использовались образцы в виде капли зажатой между стеклами КBr.
Содержание гидроксильных и аминных групп определялось химическими методами [4-6].
Физико-механические показатели исходных и вторичных ПУ определялись согласно стандартам ИСО.
ИК-спектроскопический анализ продукта гликолиза СКУ-ОМ показал наличие полос поглощения, характерных для уретановой ( (3340, 1735, 1535, 780см - 1), сложноэфирой (1735 см - 1) и гидроксильной (3460 см - 1) групп. Наличие указанных групп позволило предположить, что продукт гликолиза представляет собой смесь бифункциональных по ОН - группам полиолов и уретанполиолов, образующихся в результате каталитического гликолиза аллофанатных, сложноэфирных и уретановых фрагментов (рис., реакции 1,3,4).
Поскольку в ДА входит ОМ в реакционных количествах, то наряду с гликолизом, не исключена возможность протекания фенолиза указанных групп, которая приводит к образованию моно - и даже нефункциональных по ОН - группам соединений.
Важнейшим технологическим параметром, позволяющим контролировать процесс гликолиза, является содержание в системе гидроксильных групп (СОН). Установлено, что СОН в гликолизате после незначительного снижения, связанного с углублением деструктивных процессов, 1,8 %. Указанное¸ 1,7~через 16 часов при 120 оС стабилизируется на уровне значение фактически соответствует содержанию ОН-групп в исходном полиэфире.
Ввиду того, что полученный гликолизат имеет близкое строение и параметры с ПЭБА применяемого для синтеза литьевых монолитных ПУ, появилась возможность его использования в качестве части полиольной составляющей при получение каучука СКУ-ОМ. Динамика изменения физико-механических показателей СКУ-ОМ, полученных с применением вторичного полиола показывает достаточно высокий уровень прочностных показателях вплоть до 20% содержания ПУ отходов (табл.1).
Следующим объектом химической деструкции служили ЭППУ и ЖППУ. Разрушение указанных ПУ возможно за счет гликолиза аллофанатных, биуретовых, уретановых и мочевинных групп. В результате образуются соединения с концевыми гидроксильными и аминными группами (рис., реакции 1,2,4,5). Изучение зависимости дест.) иtсодержания в продуктах гликолиза ОН - и NН2-групп от времени (температуры (Тдест.) разрушения показало, что в "мягких условиях" (120 оС) идет образование только гидроксильных групп, концентрация которых закономерно снижается с течением времени и в дальнейшем выходит на плато. Для систем 8,5 % мас., а для~ (ЭППУ+Лапрол 5003+Лапрамол 294) это значение составляет 9,8 % мас. Данные значения близки к количеству ОН-групп~ (ЖППУ+Лапрол 564) - изначально поставляемых смесью Лапрола 5003 и Лапрамола 294 (9,4 % мас) и Лапрола 564 - (10,2 % мас.). Наблюдаемая тенденция может иметь место только в случае гликолиза аллофанатных, биуретовых и уретановых групп (рис., реакции 1,2,4), приводящих к образованию гидроксилсодержащих соединений. повышение дест.). В первые часыtтемпературы приводит к изменению зависимости СОН=f деструкции наблюдается незначительное плато, которое переходит в довольно резкое падение значений СОН. Период достижения постоянных значений СОН уменьшается с увеличением Тдест. Уровень же плато независимо от Тдест. остается постоянным и его значения соответствуют СОН продуктов гликолиза при 120 оС. Дальнейшее дест приводит к одновременному убыванию концентрации ОН-групп иtувеличение росту содержания в гликолизате NH2-групп за счет распада мочевинных связей ППУ (реакция 5). При этом суммарная концентрация ОН - и NН2-групп в системе, в силу обменного характера процессов гликолиза и аминолиза, остается постоянной.
Рекомендуется использовать в качестве вторичных полиолов продукты гликолиза ППУ в период выхода значений СОН на уровень постоянных значений.
ИК-спектры вторичных полиолов на основе ЭППУ и ЖППУ свидетельствуют о наличии полос поглощения соответствующих гидроксильной (3400-3500 см-1), уретановой (1725-1730, 1515-1535 и 770 см-1), мочевинной (1610-1620 см-1), простой эфирной (1090-1110 см-1) и изоциануратной (1420 см-1), в случае полиола на основе ЖППУ, групп. Присутствие в спектрах этих полос позволяет охарактеризовать вторичные полиол на основе системы (ЭППУ+Лапрол 5003+Лапрамол 294) как смесь Лапрола 5003, Лапрамола 294 и простых полиолов, содержащих в своей структуре уретановые и мочевинные связи, вторичный полиол на основе системы (ЖППУ+Лапрол 564) как смесь Лапрола 564 и полиолов с уретановыми, мочевинными и изоциануратными группами.
Полученные вторичные полиолы были апробированы в качестве гидроксилсодержащих компонентов в синтезе клеевых и герметизирующих композиций [7,8]. В частности, прочности клеевых соединений на отрыв и сдвиг образцов сталь 3-сталь 3, выполненные композицией на основе вторичного полиола (ЭППУ+Лапрол 5003+Лапрамол 294) с содержанием 40 мас. ч. отходов ЭППУ, соответственно составляют 21 МПа и 12 МПа. Этот клей может успешно конкурировать с существующими уретановыми клеями конструкционного назначения.