Технология герметизации погружного насоса эпоксидным компаундом

Автор работы: Пользователь скрыл имя, 26 Июня 2014 в 17:41, курсовая работа

Краткое описание

Производство эпоксидных смол началось с исследований проводимых в США и Европе накануне второй мировой войны. Первые смолы — продукты реакции эпихлоргидрина с бисфенолом А — были получены в промышленных масштабах в 1947 г. За 10 лет уровень их производства составил свыше 13,6 тыс. т., в последующие шесть лет уровень производств их увеличился в 3 раза. В конце 50-х годов были получены новые эпоксидные смолы, отличные от диглицидилового эфира; в конце 1960 г. промышленностью освоено производство не менее 25 типов смол. На этом этапе термин «эпоксидная смола» становится общим и в настоящее время применяется к большому семейству материалов.

Содержание

Введение
1. Эпоксидные смолы
1.1 Технологический процесс изготовления эпоксидной смолы
1.2 Отверждение эпоксидных смол
1.3 Марки эпоксидных смол
2. Области применения
2.1 Эпоксидные компаунды
2.1.1 Эпоксидные формовочные компаунды
2.1.2 Эпоксидные смолы для инструмента и приспособлений
2.1.2.1 Формы из эпоксидных смол для заливочных и формовочных компаундов
2.1.2.2 Эпоксидные смолы для матриц
2.1.2.3 Системы из эпоксидных смол для штампования металла.
2.1.3 Литье, заливка, капсулирование, герметизация.
2.1.4 Стеклопластики на основе эпоксидных смол
2.1.5 Клеи на основе эпоксидных смол
2.1.6 Марки эпоксидных композиций
2.2 Пенопласты из эпоксидных смол
2.1 Химические пенопласты
2.2 Синтактические пенопласты
2.3 Покрытия эпоксидными порошками
3. Технология герметизации погружного насоса эпоксидным компаундом
3.1 Характеристика сырья
3.2 Описание принципа работы линии
3.3 Выбор оборудования
Заключение
Список использованной литературы

Вложенные файлы: 1 файл

Эпоксидные смолы.doc

— 1.04 Мб (Скачать файл)

Форма и характер поверхности зерен песка.

Эти факторы имеют большое значение для формуемости силикатной смеси и прочности сырца, а также влияют на скорость реакции с известью, начинающейся во время автоклавной обработки на поверхности песчинок. По данным В. П. Батурина, И. А. Преображенского и Твенхофелла, форма зерен песка может быть окатанной (близкой к шарообразной).; полуокатанной (более волнистые очертания); полуугловатой (неправильные очертания, острые ребра и углы притуплены); угловатой (острые ребра и углы). Поверхность песчинок может быть гладкой, корродированной и регенерированной. Последняя получается при нарастании на песчинках однородного материала, например кварца на кварцевых зернах.

Гранулометрия песков.

В производстве силикатного кирпича гранулометрия песков играет важную роль, так как она в решающей степени определяет формуемость сырца из силикатных смесей. Наилучшей гранулометрией песка является та, средние зёрна размещаются между крупными, а мелкие – между средними и крупными зёрнами.

Большинство исследователей к пескам относят зёрна размером 0,05 – 2 мм. В.В. Охотин выделяет при этом две фракции: песчаные – 0,25 – 2 мм и мелкопесчаные – 0,05 – 0,25 мм. П.И. Фадеев разделяет песок по размеру зёрен на пять групп: грубые (1 – 2 мм), крупные (0,5 – 1 мм), средние (0,25 – 0,5 мм), мелкие (0,1 – 0,25 мм) и очень мелкие (0,05 – 0,1 мм).

При смешении одинаковых по массе трёх фракций песка (крупного, среднего и мелкого) с соотношением размеров их зёрен 4:2:1 получают смесь с высокой пористостью; при соотношении 16:4:1 пористость значительно уменьшается, при соотношении 64:8:1 – уменьшается ещё более сильно, при соотношении 162:16:1 достигается наиболее плотная их упаковка.

Установлено, что оптимальная упаковка зёрен силикатной смеси (с учётом наличия в ней тонкодисперсных зёрен вяжущего) находится в пределах соотношений от 9:3:1 до 16:4:1.

Пористость песков.

Пористость рыхло насыпанных окатанных песков возрастает по мере уменьшения диаметра их фракций, а в уплотненном виде она одинакова для всех фракций, за исключением мелкой. Пористость остроугольных песков возрастает по мере уменьшения их размеров, как в рыхлом, так и в уплотненном состоянии (табл. 4).

Таблица 4.

Фракция, мм

Пористость песков, %, в состоянии

 

рыхлом

уплотнённом

 

окатанные

остроугольные

окатанные

остроугольные

2 – 1

1 – 0,5

0,5 – 0,25

0,25 – 0,1

0,1 – 0,06

36,06

36,3

39,6

44,8

44,53

47,63

47,1

46,98

52,47

54,6

33,4

33,63

33,42

34,35

39,6

37,9

40,61

41,09

44,82

45,31


 

 

 

 

 

Из табл. 5 следует, что с уменьшением крупности песков их пористость возрастает довольно значительно. Таким образом, в большинстве случаев мелкие пески (за исключением хорошо окатанных) обладают повышенной пористостью как в рыхлом, так и в уплотненном состоянии, в связи с чем при их использовании в производстве силикатного кирпича расходуют больше вяжущего.

 

 

 

Таблица 5.

Песок

Диаметр зёрен, мм

Пористость, %

Крупный

Средний

Мелкий

Пылеватый

2 – 1

1 – 0,5

0,5 – 0,25

0,25 – 0,05

35 – 39

40

42 – 45

47 – 55


 

 

 

Влажность.

 В грунтах содержится  вода в виде пара, гигроскопическая, пленочная, капиллярная, в твердом  состоянии, кристаллизационная и  химически связанная. Способность  грунта удерживать в себе воду  за счет молекулярных сил сцепления  называют молекулярной влагоемкостью, а влажность, соответствующую максимальному смачиванию, – максимальной молекулярной влагоемкостью. Последняя возрастает по мере уменьшения размера фракций песка, что видно из табл. 6.

Таблица 6.

Материал

Фракция, мм

Максимальная молекулярная влагоёмкость

Песок:

крупный

средний

мелкий

 

очень мелкий

Глина

 

1 – 0,5

0,5 – 0,25

0,25 – 0,1

0,005 - 0

 

1,57

1,6

2,73

4,75

10,18

44,85


 

 

 

 

Влажность песка в значительной мере влияет на его объем, что необходимо учитывать при перевозке песка в железнодорожных вагонах или баржах, а также при намыве его на карты. Наибольший объём пески занимают при влажности примерно 5%.

Добыча и обработка песка

Добыча песка. Все силикатные заводы размещают обычно вблизи месторождения основного сырья – песка. Прежде чем приступить к добыче песка, место добычи – карьер – необходимо предварительно подготовить к эксплуатации. Для этого снимают вскрышные породы, т. е. верхний слой, содержащий землю, посторонние предметы, глину, органические вещества и т. п. Если толщина слоя не более 1 м, то верхний слой снимают бульдозером или скрепером с последующим транспортированием его в отвал. Если же вскрышные породы имеют большую высоту, расстояние до отвала значительное, то вскрышные работы производят экскаваторами и отвозят пустую породу рельсовым или автомобильным транспортом. Добыча песка начинается после снятия вскрышных пород и производится одноковшовыми экскаваторами, оборудованными прямой лопатой с различной емкостью ковша.

Транспортирование песка от забоя. Для перевозки песка от забоя в производственное помещение, т. е. к песочным бункерам, пользуются различным транспортом, а именно: рельсовым, автотранспортом, ленточными транспортерами и т. д.

Для перевозки песка от забоя к песочным бункерам вагонетками укладывается узкоколейный рельсовый путь. Рельсовые пути по своему устройству разделяются на постоянные и переносные; при разветвлении и для переезда с одного пути на другой устанавливают стрелочные переводы. В зависимости от принятой системы движения составов существуют следующие разновидности путей: однопутная тупиковая или кольцевая. Карьерные пути необходимо поддерживать всегда в исправном состоянии.

Основные требования к состоянию пути: балластный слой должен иметь заданную толщину и откосы; все шпалы должны быть плотно подбиты во избежание просадки пути при движении составов; путь должен быть отрихтован строго по прямой или по кривой данного радиуса без отклонений в сторону.

При рельсовом транспорте песок грузят экскаватором в большегрузные вагонетки Т-54 с опрокидывающимся кузовом, емкостью 2,5 – 3 м3.

Из вагонеток в песочные бункера песок разгружают, опрокидывая кузов. Эта трудоемкая операция в настоящее время на ряде заводов механизирована.

При небольшом расстоянии от забоя до песочных бункеров для транспортирования песка используют ленточные транспортеры, которые представляют собой бесконечную ленту из многослойной прорезиненной ткани, надетую на два цилиндрических барабана (приводной и натяжной). Если привести во вращение один из барабанов – приводной, то лента начинает двигаться и приводит в движение второй барабан – натяжной. Под лентой устанавливают поддерживающие ролики. Чем шире транспортерная лента, тем большее количество материала она может перебросить за единицу времени. Чтобы материал не сбрасывался с ленты, устанавливается определенная скорость движения.

Обработка песка. Песок, поступающий из забоя до его употребления в производство, должен быть отсеян от посторонних примесей – камней, комочков глины, веток, металлических предметов и т. п. Эти примеси в процессе производства вызывают брак кирпича и даже поломки машин. Поэтому над песочными бункерами устанавливают барабанные грохоты.

3.1.2Известь.

Известь является второй составной частью сырьевой смеси, необходимой для изготовления силикатного кирпича.

Сырьём для производства извести являются карбонатные породы, содержащие не менее 95% углекислого кальция CaCO3. К ним относятся известняк плотный, известняковый туф, известняк-ракушечник, мел, мрамор. Все эти материалы представляют собой осадочную горную породу, образовавшуюся главным образом в результате отложения на дне морских бассейнов продуктов жизнедеятельности животных организмов.

Известняк состоит из известкового шпата – кальцита – и некоторого количества различных примесей: углекислого магния, солей железа, глины и др. От этих примесей зависит окраска известняка. Обычно он бывает белым или разных оттенков серого и желтого цвета. Если содержание глины в известняках более 20%, то они носят название мергелей. Известняки с большим содержанием углекислого магния называются доломитами.

Мергель является известково-глинистой породой, которая содержит от 30 до 65% глинистого вещества. Следовательно, наличие в нем углекислого кальция составляет всего 35 – 70%. Понятно, что мергели совершенно не пригодны для изготовления из них извести и поэтому не применяются для этой цели.

Доломиты, так же как известняки, относятся к карбонатным горным породам, состоящим из минерала доломита (СаСО3*МgСО3). Так как содержание в них углекислого кальция менее 55%, то для обжига на известь они также непригодны. При обжиге известняка на известь употребляют только чистые известняки, не содержащие большого количества вредных примесей в виде глины, окиси магния и др.

По размерам кусков известняки для обжига на известь делятся на крупные, средние и мелкие. Размеры кусков известняка приведены в табл. 7.

 

Таблица 7.

Показатели

Размеры кусков

 

Крупные

Средние

Мелкие

Предельный наибольший размер кусков в мм

Предельный наименьший размер кусков в мм

Допустимое содержание кусков ниже предельного наименьшего размера в %

400

200

3

200

80

3

80

30

3


 

 

 

 

Действующим ГОСТ 5331 – 55 установлены правила приемки известняков и методы их испытания. Размер партии известняка установлен в 100 т, причем остаток более 50 т считается также партией.

Содержание мелочи в известняке определяют, просеивая 1 т, породы через грохоты.

Основным вяжущим материалом для производства силикатных изделий является строительная воздушная известь. По химическому составу известь состоит из окиси кальция (СаО) с - примесью некоторого количества окиси магния (МgО).

Различают два вида извести: негашеную и гашеную; на заводах силикатного кирпича применяется негашеная известь. Технические условия на воздушную негашеную известь регламентированы ГОСТ 9179 – 59, согласно которому известь разделяется на три сорта. Требования к качеству извести изложены в табл. 8.

 

Таблица 8.

Технические условия на негашёную комовую известь.

Показатели

Сорта

 

1

2

3

Содержание активных СаО+MgO, считая на сухое вещество, в % (не менее)

Содержание непогасившихся зёрен в % (не более)

Скорость гашения в мин:

быстрогасящаяся (до)

медленногасящаяся (более)

 

85

 

10

 

20

20

 

70

 

20

 

20

20

 

60

 

25

 

20

20


 

 

 

При обжиге известняк под влиянием высокой температуры разлагается на углекислый газ и окись кальция и теряет 44% своего первоначального веса. После обжига известняка получается известь комовая (кипелка), имеющая серовато-белый, иногда желтоватый цвет.

При взаимодействии комовой извести с водой происходят реакции гидратации СаО+ Н2О = Са(ОН)2; МgО+Н2О=Мg(ОН)2. Реакции гидратации окиси кальция и магния идут с выделением тепла. Комовая известь (кипелка) в процессе гидратации увеличивается в объеме и образует рыхлую, белого цвета, легкую порошкообразную массу гидрата окиси кальция Са(ОН)2. Для полного гашения извести необходимо добавлять к ней воды не менее 69%, т.е. на каждый килограмм негашеной извести около 700 г воды. В результате получается совершенна сухая гашеная известь (пушонка). Если гасить известь с избытком воды, получается известковое тесто.

К извести предъявляют следующие основные требования:

1) известь должна быть  быстрогасящаяся, т. е. время гашения  ее не должно превышать 20 мин.; применение медленногасящейся извести  снижает производительность гасительных  установок;

2) сумма активных окислов кальция и магния (СаО+МgО) в извести должна составлять не менее 85%;

3) содержание окиси магния  в извести не должно превышать 5%, так как магнезиальная известь  гасится медленно;

4) содержание недожженной извести не должно превышать 7%, так как она не активна и не влияет на твердение кирпича при запаривании, а является балластом, увеличивающим расход извести и удорожающим себестоимость готовой продукции;

5) известь не должна быть пережженной, так как в таком виде она медленно гасится и вызывает растрескивание кирпича в запарочных котлах (автоклавах).

Информация о работе Технология герметизации погружного насоса эпоксидным компаундом