Стресс как общий адаптационный синдром

Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 22:45, реферат

Краткое описание

Основным, и почти единственным источником энергии в органическом мире является свободная энергия Солнца, усваиваемая хлоропластами растений и расходуемая на разделение водорода и кислорода в молекулах воды и конечном счёте-на синтез органических соединений разной степени сложности. В организме животных и человека эта энергия «законсервирована» в химических связях сложных органических соединений, которая частично освобождается в процессе окисления их молекулярным кислородом этот процесс носит название-клеточное дыхание

Содержание

Введение.
Стресс как общий адаптационный синдром (ОАС).
Окислительный стресс.
Образование свободных радикалов.
Причины окислительного стресса.
Антиоксидантная система организма.
Антиокислительные ферменты.
Жирорастворимые антиоксиданты.
Водорастворимые антиоксиданты.
Изменения происходящие в организме.
Роль антиоксидантов в профилактике различных заболеваний.
Заключение.
Список литературы.

Вложенные файлы: 1 файл

ОС и П.docx

— 44.98 Кб (Скачать файл)

 Каталаза

Каталаза - пероксид водорода: пероксид водорода оксиредуктаза разлагает пероксид водорода. Реакция разложения протекает в две стадии:сначала образуется комплекс фермента с одной, а затем с другой молекулой пероксида водорода. Основная функция каталазы в клетке- это разложение пероксида водорода, образующегося при дисмутации супероксидного анион-радикала. Наибольшая активность каталазы отмечена в гепатоцитах печени, в пероксисомах которой, этот фермент составляет до 40% от всего белка.

Жирорастворимые антиоксиданты

Вслед за цитохром-с-оксидазой и антиоксидантыми ферментами клетки третью линию защиты осуществляют вещества обладающие антирадикальной и антипероксидной активностью и находящиеся там, где расположены субстраты-мишени атаки свободных радикалов и пероксидов. В первую очередь, это такие места, как биологические мембраны, а мишени-это полиненасыщенные жирные кислоты:линолевая, линоленовая и арахидоновая. Поэтому в структуру плазматических, митохондриальных, микросомальных, лизосомальных мембран встроены жирорастворимые антиоксиданты. К которым относятся: токоферол, убихинон, витамин А.

Токоферол

Это подвижный гидроксил который в положении 6 хроманового ядра молекулы а-токоферола непосредственно взаимодействует с пероксидами и свободными радикалами с образованием токоферолхинона и димеров а-токоферола, прерывая тем самым процесс свободнорадикального пероксидного окисления липидов. Его важной особенностью служит то, что он способен повышать уровень природных липидных антиоксидантов, в отличии от синтетических мощных антиоксидантов. Токоферол выполняет несколько функций. Он взаимодействует с гидроксильным радикалом ОН(наиболее сильнодействующий и короткоживущий из активных форм кислорода). Токоферол оказывает «тушащее» действие по отношению к синглентному кислороду, акцептирует супероксид О2 и ингибирует липидные радикалы, радикалы аминокислот, защищает от токсического действия озона, блокируя порождаемые им реакции. Образующиеся в процессе реакций токоферол мало активен и поэтому способен к повторному взаимодействию с радикалами, с образованием нейтральных продуктов, и отрывом двух цепей свободнорадикального окисления. Но в тоже время, при избытке токоферола, образующиеся радикалы его действуют как прооксиданты, то есть продолжают цепь, разрыхляют мембраны и даже могут усиливать лучевое поражение. Но присутствие других антиоксидантов, например аскорбиновой кислоты, способствует восстановлению токоферола и его антиоксидантной активности. Антиоксидантные свойства токоферола усиливаются также в присутствие холестерина, хотя последний антиоксидантными свойствами не обладает. Так как а-токоферол в организме человека не синтезируется, то он относится к необходимым факторам питания-витаминам и недостаток может привести к синдрому пероксидации, проявляющийся увеличением концентрации свободных радикалов в печени, сердце, мыщцах, развитием атеросклероза, гипертонической болезни, угнетение гуморального иммунитета, дегенерации сетчатки глаза, хотя чёткой картины Е-авитоминоза не описано. А-токоферол принадлежит к числу важнейших универсальных жирорастворимых антиоксидантов, обладающих мембраннозащитной, антимутагенной активностью. Взаимодействуя с другими природными антиоксидантами других классов, он является важнейшим регулятором окислительного гомеостаза клеток и организмов, важнейшим компонентом антиоксидантой активности тканей.

Убихинон

Кофермент Q, подобно токоферолу жирорасворимый и обладает антиоксидантной активностью, образуя окислительно-восстановительную буферную систему убихинол-убихинон. Его важная роль связана с участием в митохондриальной цепи электронного транспорта, в качестве одного из его компонентов и кофермента, входящих в цепь сукцинат-Q-NADH-Q-редуктазных и цитохром с-Q-оксидазной систем. Убихинон структурно близок а-токоферолу, их внутриклеточная локализация и биологическая активность похожи. Их близкие аналоги это-пластохиноны и нафтохиноны. Однако убихинон, в отличии от витамина Е и К, синтезируется в организме животных и человека и поэтому к витаминам не относится. Основная часть внутриклеточного убихинона находится в митохондриях, а также присутствует в ядрах и эндоплазматическом ретикулуме и в не больших количествах в аппарате Гольджи и в лизосомах. Много его в органах с большой метаболической активностью-сердце, печень и почки. Подобно а-токоферолу убихинон является слабым антиоксидантом, но он как а-токоферол стимулирует повышение уровня природных антиоксидантов в организме.

Витамин А

Ретинол, ретиналь, ретиновая кислота и его провитамины:в-каратин и другие каратиноиды. Непосредственным предшественником витамина А являются каратиноиды- растительные пигменты, придающие вмести с флавоноидами и ксантоффилами оранжевую окраску овощам и фруктам. Основной их структурной особенностью, обуславливающей химическую, биологическую и антиоксидантную активность, является наличие системы сопряжённых, чередующихся одинарных и двойных связей между атомами углерода. Максимальной активностью обладает транс-изомер витамина А. Витамин А и каратиноиды оказывают антиоксидантную активность во всех биологических мембранах клетки от повреждения их активными формами кислорода, а именно:синглетным кислородом, пероксидными радикалами, канцерогенами;участвуют в регуляции микросомального окисления, ингибируя метаболическую активацию канцерогенов. Антиоксидантные свойства ретиноидов сводится к тому, что они способны к лёгкому обратимому окислению-восстановлению и функционируют в качестве свободного буфера. Витамин А и каратиноиды обладают также антитоксическим, антирадиоционным, антиканцерогенныи, антимутагенным, геропротекторным действием.

Водорастворимые антиоксиданты

Присутствие в жидких средах организма  легкоокисляющихся липидных образований (липопротеины крови, хиломикроны, холестерин, триглицериды, фосфолипиды)увеличивают опасность окисления активными формами кислорода и поэтому существуют специализированные антиоксидантные системы, ответственные за стабильность прооксидантно-антиоксидантного равновесия жидкостных сред организма. К их числу относятся:система восстановленный-окисленный глютатион, система аскорбиновой кислоты, фенольные соединения. Каждая из этих систем представляет собой окислительно-восстановительную буферную систему, состоящую из восстановленного и окисленного членов, переходящих друг в друга в зависимости от колебаний параметров среды и направленности метаболических процессов. В нормальных условиях равновесие внутри каждой из редокс-систем сильно сдвинуто в сторону восстановленного субстрата. Преобладание последних и образуют антиокидантный резерв, буферную ёмкость систем.

Глютатион ( y-глютамил-цистеинил-глицин).

Играет ключевую роль в защите клеток и внутриклеточной среды от радиоционноспособных интермедиаторов кислорода, образующихся при метаболизме ксенобиотиков, действия ионизирующего излучения и окислительном стрессе. Содержится глютатион преимущественно внутри клеток, в довольно больших концентрациях и в виде восстановленной формы. Некоторая его часть внутри клеток находится в связанном виде-в форме смешанных дисульфидов с белками и высвобождается при повышении концентрации АМФ, то есть при функциональном напряжении, а также в виде соединений с коэнзимом А (КоА). Восстановленный глютатион не проникает через клеточную мембрану и поэтому синтезируется внутриклеточно и к тому же быстро окисляется в плазме крови. Поэтому при экзогенном введении его в кровь он быстро возвращается в узкие физиологические границы. Внутриклеточный глютатион является фактором защиты от токсического действия многих ксенобиотиков, препятствует взаимодействию активных метаболитов с SH-группами белков, взаимодействует с цитохромом Р-450, инактивируя активные формы кислорода, образующиеся при действии этого ферментного комплекса, и тем самым защищает его от ингибирования этими продуктами.

Небелковые тиоловые соединения (цистеин, тиосульфат натрия, унитиол, цистеамин)

Они участвуют в клеточной пролиферации, стимулируют её, повышают устойчивость клеток к разнообразным вредным  воздействиям, оказывают радиозащитное  действие, стимулируют иммунореактивность, в некотором смысле замедляют  процесс старения организма, стимулируют  заживление ран, повышают устойчивость к шоку. К нему относится:эрготионеин-тиолгистидин он близок по своим свойствам и функциям к металлотионеинам - низкомолекулярные белки, не обладающие ферментативной активностью и связывающие ионы тяжёлых металлов с переменной валентностью.

Система аскорбиновой кислоты (витамин С).

Вторая по значимости антиоксидантная  система биологической жидкости. У разных видов её роль разнообразна, у мышей и крыс она синтезируется  в организме и, таким образом  полностью удовлетворяются её потребности. У человека и и других животных она не синтезируется и поэтому должна поступать из вне, то есть является витамином. В организме она не имеет депо накопления и поэтому очень быстро распадается, в связи с этим должна постоянно поступать с пищей. Аскорбиновая кислота неустойчива и при её окислении она подвергается дегидрированию с образованием дегидроаскорбиновой кислоты (ДАК). Переход осуществляется через промежуточную стадию нестойкого интермедиата -- семидегидроаскорбата (аскорбил). При дальнейшем необратимом окислении образуется дикетогулоновая кислота. Аскорбиновая кислота метаболически высокоактивна, тогда как её радикал аскорбил (первый продукт её окисления) относительно инертен, долгоживущий и может участвовать в окисленно-восстановительных реакциях. В биологических системах аскорбиновая кислота присутствует в виде отрицательно заряженного лактона. Дегидроаскорбиновая кислота проходит через клеточные мембраны и является транспортной формой витамина С, сама же аскорбиновая кислота через мембраны проходит с трудом. В клетках и в крови присутствуют все три члена системы, однако в физиологических условиях равновесие сильно сдвинуто влево, в сторону наиболее восстановленного члена аскорбиновой кислоты. Это состояние и характеризует резервные возможности антиоксидантной буферной системы Аскорбиновая-семиДАК-ДАК, её способность, в определенных пределах, стабилизировать прооксиданто-антиоксидантное равновесие в биологических жидкостях, связывая и инактивируя О2, ОН, органические пероксиды, уменьшая тем самым количество продуктов пероксидного окисления липидов. В малых дозах аскорбиновая кислота может являться прооксидантом. При этом при избытке кислорода и прооксидантов резервные возможности системы исчерпываются и аскорбиновая кислота действует в прооксидантном направлении. Антиоксидантные свойства аскорбиновой кислоты помогают при горной гипоксии, гипотермии и холоде, стимулируют фагоцитарную активность нейтрофилов, выводит радионуклиды, при онкологии угнетает активность гиалуронидазы клеток опухоли (фактора инвазии). Также система аскорбиновой кислоты взаимодействует с системой глютатиона, селеном, другими антиоксидантными витаминами, при этом достигаются взаимная стабилизация эффектов, усиление и пролонгирование действий, общее увеличение антиоксидантной активности.

Система физиологически активных фенольных соединений

Это непосредственный спутник аскорбиновой кислоты. К этой системе относятся:ароматические аминокислоты - тирозин и триптофан, катехоламины - адреналин и норадреналин, серотонин и близкие к нему токоферол, убихинон, нафтохинон, конденсированый фенол - меланин. Наибольшей активностью обладают те классы веществ, которые содержат две и более гидроксильных групп в бензольном ядре. Эти классы соединений в физиологических условиях образуют окисленно-восстановительную систему, компоненты которой легко переходят друг в друга и большинстве случаев функционируют одновременно, подобно системе аскорбиновой кислоты, и играют роль буферной антиоксидантной системы. Обладая резервной антиоксидантной мощностью система фенол-семихинон-хинон при мощном окисленном стрессе и в условиях избытка кислорода действует как прооксидант. Продукты обратимого окисления обладают канцерогенными, токсическими, мутагенными свойствами. Восстановленные члены системы наоборот обладают антиоксидантной, антитоксической, антимутагенной и гепатозащитной активностью. Наиболее высокой биологической активностью, среди витаминных фенольных соединений, обладают катехины и лейкоантоцианидины - наиболее восстановленные из числа растительных фенолов и обладающие наибольшей антиоксидантной активностью. Биологические эффекты фенольных соединений усиливаются и пролонгируются при их комбинированном применении с аскорбиновой кислотой, тиоловыми соединениями (глютатион, цистеин, унитиол) и жирорастворимыми антиоксидантами (а-токоферол, убихинон).

                      Изменения происходящие в организме

Окислению при оксидативном стрессе подвергаются не только липиды биологических мембран в процесс включаются и углеводы и белки. Также изменения идут в эндокринной и гормональной системе. Снижается активность энзимной системы лимфоцитов тимуса, увеличивается уровень нейромедиаторов, высвобождаются гормоны. Идёт окисление протеинов, нуклеиновых кислот, углеводов, увеличивается общее количество липидов в сыворотке крови. Увеличивается выброс адренокортикотропного гормона в связи с увеличением распада АТФ и образование цАМФ при этом последний активирует протеинкиназу которая при участии АТФ осуществляет фосфорилирование холинэстеразы, превращающий эфиры холестерина в свободный холестерин. Усиливается биосинтез белка, ДНК, РНК, гликогена и в тоже время идёт мобилизация жиров из депо и распад высших жирных кислот и глюкозы в тканях. Эти процессы идут под действием гормона соматотропина. Усиливается действие липотропных гормонов их действие заключается в жиромобилизующем действии, кортикотропном действии, а также инсулиноподобное действие то есть повышение утилизации глюкозы в тканях. Липотропный эффект осуществляется через систему аденилатциклаза-цАМФ-протеинкиназа, завершающей стадией будет фосфорилирование неактивной триацилглицерол-липазы, которая после активации расщепляет нейтральные жиры на диацилглицерол и высшую жирную кислоту. Усиливается действие гормонов щитовидной железы так как она регулирует скорость основного обмена то есть рост и дифференцировку тканей, обмен белков, углеводов и липидов, увеличивает синтез ферментов, регулирующих скорость окисленно-восстановительных процессов. Очень важную роль играют гормоны инсулин и глюкагон. Есть предположения что глюкоза действует как сигнал для активирования аденилатциклазы, а образовавшаяся в этой системе цАМФ-сигнал для секреции инсулина. Это в свою очередь приводит к усилению распада гликогена в печени и мышцах, замедление биосинтеза белков и углеводов, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличению содержания холестерина и других липидов в крови. Усиливается мобилизация жиров из депо, усиливается глюконеогенез, синтез кетоновых тел. Глюкагон же напротив способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров, стимулирует образование глюкозы из аминокислот путём индукции синтеза ферментов глюконеогенеза при участии цАМФ, также он тормозит гликолитический распад глюкозы до молочной кислоты. Перерасход глюкозы ведёт за собой усиление глюконеогенеза-это синтез глюкозы из неуглеводных продуктов. Такими продуктами являются в первую очередь молочная и пировиноградная кислоты, глицерол и любое соединение которое в процессе катаболизма превратиться в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. Также основными субстратами являются лактат и аминокислоты, при чём принято считать, что все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза. Центральную роль в превращениях углеводов играет глюкозо-6-фосфат, он резко тормозит фосфорилитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, а также является субстратом для дальнейших гликолитических превращений, в том числе и окислении глюкозы по пентозофосфатному пути. При этом усиливается синтез ферментов глюконеогенеза, особенно фосфоэнолпируват-карбоксикиназа, которая определяет скорость глюконеогенеза в печени и почках, при этом соотношение гликолиза и глюконеогенеза смещается в право. Индукторами синтеза ферментов глюконеогенеза служат глюкокортикоиды.

Увеличивается количество кетоновых  тел-это своего рода поставщики топлива  для мышц, почек и действуют  как регуляторный механизм предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Это происходит потому-что многие ткани начинают испытывать энергетический голод из-за того, что при недостатке инсулина глюкоза не может пройти в клетку. При высоком содержании жирных кислот в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов, окисление жирных кислот, а это и приводит к повышению кетоновых тел.

Белки начинают распадаться до свободных  аминокислот. Подвергаются этому в  основном белки биологических мембран, белки печени, плазмы, мышц. В основном это происходит в реакциях дезаминирования до конечного продукта- пирувата. Углеродные скелеты аминокислот при этом могут включатся в цикл трикарбоновых кислот через ацетил-КоА(ПВК), щавеливоуксусную кислоту, оксалоацетат, а-кетоглутарат, сукцинил-КоА. Пять аминокислот (Фен, Лиз, Трп, Тир) являются кетогенними, так как они предшественники кетоновых тел, в частности ацетоуксусной кислоты, остальные аминокислоты являются источником углеводов и частности глюкозы. Хотя такое распределение на кетогенные и гликогенные аминокислоты условно, так как некоторые углеродные атомы Лиз, Трп, Фен, и Тир могут включаться в молекулы предшественников глюкозы, например Фен и Тир-в фумарат. Истинно кетогенной является только лейцин. Увеличивается синтез биогенных аминов путём декарбоксилирования ароматических аминокислот например: 3, 4-диоксифенилаланин до дофамина из тирозина, а он в свою очередь предшественник катехоламинов;глутаминовая кислота до гама-аминомасляной кислоты(ГАМК). Все эти процессы усиленного распада белков приводят к отрицательному азотистому балансу-это когда распад превосходит синтез.

Роль антиоксидантов в  профилактике различных заболеваний.

Сердечно-сосудистые заболевания. Антиоксиданты являются высокоэффективным средством,препятствующим возникновению и прогрессированию атеросклероза, т.к. препятствует формированию тромбов и атеросклеротических бляшек на стенках сосудов. Антиоксиданты являются лучшим ''чистильщиком'' кровеносных сосудов, их использование позволяет в несколько раз снизить риск заболеваний гипертонией, стенокардией, инфарктом миокарда и инсультом, а также варикозным расширением вен и тромбофлебитами. Многочисленными исследованиями показано, что главной причиной ишемической болезни сердца (ИБС) является спазм коронарной артерии. По результатам последних исследований большую роль в развитии атеросклероза и ИБС отводят окисленным липопротеидам низкой плотности (ЛПНП), которые могут быть вовлечены в патогенез. Образование окисленных ЛПНП увеличивает способность коронарных сосудов к сокращению и уменьшает их эндотелий-зависимую релаксацию.Подтверждено, что антиоксиданты повышают устойчивость ЛПНП при добавлении к плазме, кроме того, они имеют антитромбоцитные свойства и ингибируют пролиферацию гладкой мускулатуры сосудов. Ранее было показано, что содержание антиоксидантов в плазме обратно связано с риском стенокардии. В недавних исследованиях убедительно доказана связь содержания антиоксидантов в плазме со спазматической активностью коронарной артерии.

Информация о работе Стресс как общий адаптационный синдром