Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 16:39, контрольная работа
Тема реферата «Химические методы очистки отходящих газов» по дисциплине «Технология очистки и утилизации газовых выбросов».
В связи с повышением требований к экологической чистоте производств все больше внимания уделяется развитию химических методов очистки отходящих газовых потоков. Эти методы сами по себе или в совокупности с основанными на других принципа технологии обеспечивают эффективную очистку выбрасываемы) в атмосферу газообразных продуктов, надежность всего производства, снижение энергозатрат и себестоимости.
При физической абсорбции в качестве абсорбента чаще всего используют воду, а также органические растворители и минеральные масла, не реагирующие с извлекаемым из газа веществом. При химической абсорбции применяют водные растворы щелочей и химических окислителей (перманганата калия, гипохлорита натрия, броматов, перекиси водорода и других), а также водные растворы моно- и диэтаноламина, аммиака, карбоната натрия и калия, трикалийфосфата.
Одним из параметров, определяющих выбор адсорбента, является способность примесей, содержащихся в отработанных газах, растворяться в данном абсорбенте.
3.3 Применение абсорбционной очистки
Абсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Применение абсорбционного метода очистки обусловлено высокой интенсивностью абсорбционных процессов, позволяющей создавать высокопроизводительные газоочистные установки, возможностью применения метода для очистки газов, содержащих и вредные газы, и пыль, и, наконец, наличием огромного опыта эксплуатации абсорбционного оборудования в различных технологических процессах и в первую очередь в химической технологии.
3.4 Недостатки и преимущества абсорбционного метода очистки газов
Абсорбционный метод очистки газов не свободен от определенных недостатков, связанных, прежде всего, с громоздкостью оборудования. Этот метод достаточно капризен в эксплуатации и связан с большими затратами. К недостаткам абсорбционного метода следует отнести также образование твердых осадков, что затрудняет работу оборудования, и коррозионную активность многих жидких сред. Однако, не смотря на эти недостатки, абсорбционный метод еще широко применяется в практике газоочистки, так как он позволяет улавливать наряду с газами и твердые частицы, отличается простотой оборудования и открывает возможности для утилизации улавливаемых примесей
4. Адсорбционные и хемосорбционные методы очистки отходящих газов
4.1 Основные понятия
Адсорбционные методы используют для очистки газов с невысоким содержанием газообразных и парообразных примесей. В отличие от абсорбционных методов они позволяют проводить очистку газов при повышенных температурах.
Целевой компонент, находящийся в подвергаемой очистке газовой фазе, называют адсорбтивом, этот же компонент в адсорбированном состоянии — адсорбатом.
Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции поглощаемые молекулы газов и паров удерживаются силами Ван-дер-Ваальса, при хемосорбции— химическими силами.
В качестве адсорбентов используют пористые материалы с высокоразвитой внутренней поверхностью. Последние могут иметь синтетическое или природное происхождение.
Внутренняя структура наиболее распространенных на практике промышленных адсорбентов характеризуется наличием 'различных размеров и форм пустот или пор, среди которых различают макро-, переходные (мезо-) и микропоры. Суммарный объем последних в единице массы или объема адсорбента определяет в решении задач газоочистки как скорость (интенсивность) поглощения целевого компонента, так и адсорбционную способность (величину адсорбции) твердым поглотителем этого компонента.
Суммарный объем микропор обычно не превышает 0,5 см3/г. Их размеры условно ограничены величиной эффективного радиуса rэф=1,5*10-9 м и соизмеримы с rэф адсорбируемых молекул. Характерной особенностью адсорбции в микропорах в этой связи является заполнение их объема адсорбируемыми молекулами.
Переходные поры характеризуются величинами эффективных радиусов от 1,5*10-9 до 2*10-7 м. В отличие от микропор в них возможна слоевая моно- или полимолекулярная адсорбция, так как адсорбционные силы здесь не перекрывают всего объема пор ввиду небольших полей их действия. Завершение заполнения объема переходных пор происходит при определенных условиях по механизму капиллярной конденсации, вызываемой понижением давления пара адсорбируемого вещества над вогнутым под действием сил поверхностного натяжения мениском жидкости в порах (капиллярах). Отнесенная к единице массы удельная поверхность переходных пор промышленных адсорбентов обычно находится в интервале 10 — 400 м2/г.
Макропоры промышленных адсорбентов обладают размерами эффективных радиусов, превосходящими 2*10-7м. Удельная поверхность этой разновидности пор обычно составляет лишь 0,5 -
2 м2/г, что предопределяет ничтожную величину адсорбции на их стенках. Капиллярная конденсация в этих порах отсутствует. Макро- и переходные поры выполняют роль транспортных путей, обеспечивающих при адсорбции доступ поглощаемых молекул в микропоры и эвакуацию адсорбата при регенерации адсорбента.
Основные типы промышленных адсорбентов являются смешаннопористыми материалами, однако в соответствии с преобладающим в их структуре размером пор они могут подразделяться на микро-, переходно- и макропористые.
Пористые адсорбенты характеризуют величинами истинной, кажущейся и насыпной (гравиметрической) плотности. Истинная плотность ρи выражает массу единицы объема плотного (без пор) вещества адсорбента:
где G — масса адсорбента;
V1 — объем адсорбента с учетом пор;
V2 — объем пор.
Кажущаяся плотность рк выражает массу гранулы адсорбента, отнесенную к ее объему. Насыпная плотность рн гранул адсорбента выражает массу единицы объема их слоя. Насыпная и кажущаяся плотности связаны с пористостью (порозностью) слоя адсорбента ε, выражающей долю свободного объема слоя, соотношением:
Следовательно,
Аналогичное выражение определяет пористость ε' гранул (зерен) адсорбента:
Величину пористости слоя определяют форма гранул адсорбента и характер их расположения (упаковки) в слое. Форма гранул промышленных адсорбентов обычно не является шаровидной, поэтому в соответствующих расчетах используют величину эквивалентного диаметра dэ:
где Sv — удельная геометрическая поверхность единицы объема, представляющая отношение величины поверхности гранул к их объему V'.
К основным типам промышленных адсорбентов относятся активные угли, силикагели, алюмогели (активный оксид алюминия), цеолиты и иониты.
4.2 Активные угли
Активные угли характеризуются гидрофобностью (плохой сорбируемостью полярных веществ, к которым принадлежит и вода). Это свойство определяет широкое их использование в практике рекуперационной и санитарной очистки отходящих газов разнообразной влажности.
Для адсорбции газов и паров используют микропористые гранулированные активные угли. С этой целью промышленность выпускает в настоящее время следующие марки газовых и рекуперационных активных углей: АГ-2, СКТ, АР, СКТ-3, АРТ. Угли АГ-2 (марок А и Б) и АР (марок АР-А, АР-Б, АР-В) получают из каменноугольной пыли и смолы методом парогазовой активации. Уголь СКТ синтезируют из торфа, а угли СКТ-3 и АРТ (марок АРТ-1 и АРТ-2)- из торфа и каменноугольной пыли методом химической активации. Угли АГ-2 предназначены для адсорбции газов, уголь СКТ — для улавливания паров органических веществ, угли АР, СКТ-3 и АРТ- для очистки газов от паров летучих растворителей. Активные угли для газоочистки характеризуются объемом микропор в пределах 0,24— 0,48 см3 /г при суммарном объеме пор 0,52 - 1,00 см3 /г, гравиметрическая плотность их гранул составляет 0,3 - 0,6 г/см3. Теплоемкость сухого угля - 0,84 кДж/(кг*К), теплопроводность при 30°С— 0,17— 0,28 Вт/(м*К).
Активные угли производят в виде цилиндрических гранул диаметром 1-6 мм и длиной, обычно превосходящей поперечный размер гранул, и чаще всего применяют в виде стационарного слоя, через который фильтруют подлежащий очистке газовый поток. В соответствии с действующими стандартами и технологическими условиями размер поперечника гранул углей может изменяться в определенных пределах. В этой связи в отдельных случаях с целью интенсификации соответствующих процессов гранулированные угли перед использованием подвергают дроблению и классификации с выделением необходимых узких фракций. Существенными недостатками активных углей являются относительно невысокая механическая прочность и горючесть.
Значительный интерес применительно к решению задач газоочистки в последнее время вызывают такие нетрадиционные углеродные адсорбенты, как активные угли из полимерных материалов, молекулярно-ситовые активные угли и активированные углеродные волокна.
Производимые из полимерных материалов активные угли характеризуются развитой системой микропор с диаметром (1—1,5)*10-9 м, более регулярной структурой, обеспечивающей определенное улучшение прочностных характеристик, и повышенной адсорбционной активностью при низких содержаниях целевых компонентов в очищаемых газах.
Молекулярно-ситовые
активные угли отличаются высокой однородностью
микропористой структуры и
Активированные углеродные
волокна представляют собой изготовляемые
из синтетических волокон
4.3 Силикагели
Силикагели по своей химической природе представляют собой гидратированные аморфные кремнеземы (SiO2*nН2О), являющиеся реакционноспособными соединениями переменного состава, превращения которых происходят по механизму поликонденсации:
nSi(ОН)4 → SinO2n-m +(2n-m)Н2O.
Поликонденсация ведет к формированию структурной сетки сфероподобных частиц коллоидных размеров (2*10-9-2*10-8 м), сохраняющейся при высушивании гидрогеля кремневой кислоты и образующей жесткий кремнекислородный каркас. Зазоры между частицами образуют пористую структуру силикагеля. Для получения силикагелей в промышленности обычно используют метод осаждения аморфного кремнезема из силикатов щелочных металлов минеральными кислотами. Выпускают силикагель в виде шариков, таблеток или кусочков неправильной формы. Размеры их зерен составляют от 0,1 до 7,0 мм. Адсорбционные и химические свойства силикагелей существенно зависят от наличия на их поверхности групп ≡ Si—ОН.
По характеру пористой структуры силикагеля классифицируют на крупно-, средне- и мелкопористые, к которым относят кусковые и гранулированные материалы, характеризующиеся средним радиусом пор, составляющим соответственно ≈5*10-9, (5-1,5)*10-9 и (1,5-1,0)* 10-9 м. По размеру зерен кусковые силикагели широкого использования делят на 4 марки (7,0- 2,7; 3,5-1,5; 2,0-0,25; 0,5-0,2 мм), а гранулированные — на 2 марки (7,0- 2,7 и 3,5-1,0 мм).
Для их обозначения используют буквенные сочетания:
КСК — крупный силикагель крупнопористый,
КСС — крупный силикагель срсднепористый,
МСМ — мелкий силикагель мелкопористый и т. п.
Средние фракции силикагелей называют шихтой и обозначают соответственно как ШСК, ШСС и ШСМ. Гранулированный мелкопористый силикагель содержит 4—10% Аl2O3 в качестве добавки, предупреждающей растрескивание его гранул.
Объем пор силикагелей составляет 0,3-1,2 см3 /г, их удельная поверхность находится в пределах 300-750 м3 /г, а гравиметрическая плотность заключена в интервале 0,4-0,9 г/см3. Последний показатель может служить косвенной характеристикой пористой структуры силикагелей: для мелкопористых силикагелей он составляет 0,7-0,8 г/см3, а для крупнопористых - 0,4 - 0,5 г/см3. Теплоемкость силикагелей — 0,92 кДж/(кг-К), теплопроводность при 30 °С равна 0,11 кДж/(м*ч*К).
Силикагели служат для поглощения полярных веществ. Мелкопористые силикагели используют для адсорбции легкоконденсируемых паров и газов, крупнопористые и частично среднепористые силикагели служат эффективными поглотителями паров органических соединений. Высокое сродство поверхности силикагелей к парам воды обусловливает широкое их использование, а качестве агентов осушки разнообразных газовых сред. Силикагели негорючи и характеризуются низкой температурой регенерации (110—200 °С) и достаточно высокой механической прочностью. В то же время они разрушаются под действием капельной влаги, что необходимо учитывать при их использовании в системах газоочистки.
1.4 Алюмогели
Алюмогель (активный оксид алюминия Аl2О3*nН2О, где 0<n<0,6) получают прокаливанием различных гидроксидов алюминия. При этом в зависимости от типа исходного гидроксида, наличия в нем оксидов щелочных и щелочно-земельных металлов, условий термической обработки и остаточного содержания влаги получают различные по структуре типы алюмогеля. Его промышленные сорта обычно содержат γ-Al2O3 и реже χ-А12O3 и другие модификации Al2O3. Их щелевидные или бутылкообразные поры образованы первичными кристаллическими частицами размером (3-8) *10-9 м.
Основные марки выпускаемого отечественной промышленностью активного оксида алюминия представляют собой цилиндрические гранулы диаметром 2,5-5,0 мм и длиной 3-7 мм, а также шариковые гранулы со средним диаметром 3-4 мм. Удельная поверхность алюмогелей составляет 170-220 м2/г, суммарный объем пор находится в пределах 0,6-1,0 см3/г, средний радиус пор и гравиметрическая плотность гранул цилиндрической и шариковой формы составляют соответственно (6-10)*10-9 и (3-4)*10-9 м и 500-700 и 600-900 кг/м3. В отличие от силикагелей алюмогели стойки к воздействию капельной влаги. Их используют для улавливания полярных органических соединений и осушки газов.
Информация о работе Химические методы очистки отходящих газов