Автор работы: Пользователь скрыл имя, 10 Октября 2013 в 22:07, контрольная работа
Задание:
1. Расположите территории по возрастанию фактора X. Сформулируйте рабочую гипотезу о возможной связи Y и X.
2. Постройте поле корреляции и сформулируйте гипотезу о возможной форме и направлении связи.
3. Рассчитайте параметры и парной линейной функции и линейно-логарифмической функции .
4. Оцените тесноту связи с помощью показателей корреляции ( и ) и детерминации ( и ), проанализируйте их значения.
5. Надёжность уравнений в целом оцените через F-критерий Фишера для уровня значимости a =0,05.
6. На основе оценочных характеристик выберите лучшее уравнение регрессии и поясните свой выбор.
Оценочные показатели позволяют сделать вывод, что линейно-логарифмическая функция описывает изучаемую связь хуже, чем линейная модель: оценка тесноты выявленной связи ρ=0,8798 (сравните с 0,7741), скорректированная средняя ошибка аппроксимации здесь выше и составляет 37,32%, то есть возможности использования для прогноза данной модели более ограничены.
Заключительным этапом решения данной задачи является выполнение прогноза и его оценка.
Если прогнозное значение фактора составит 1,023 от среднего уровня, то есть Xпрогнозн.= 1,023*0,557=0,569, тогда прогнозное значение результата сформируется на уровне: Yпрогнозн. =39,565-1,491*0,569=38,715 (млрд. руб.).
Рассчитаем интегральную ошибку прогноза , которая формируется как сумма двух ошибок: из ошибки прогноза как результата отклонения прогноза от уравнения регрессии- и ошибки прогноза положения регрессии. То есть, .
В нашем случае , где k- число факторов в уравнении, которое в данной задаче равно 1.
Ошибка положения регрессии составит: = 0,012 (млрд. руб.).
Интегральная ошибка прогноза составит: = 5,976 (млрд. руб.).
Предельная ошибка прогноза, которая не будет превышена в 95% возможных реализаций прогноза, составит: = 2,26*5,976 = 13,506 ≈ 14,0 (млрд. руб.).
Табличное значение t-критерия для уровня значимости α=0,05 и для степеней свободы n-k-1 = 11-1-1=7 составит 2,26. Следовательно, ошибка большинства реализаций прогноза не превысит млрд. руб.
Это означает, что фактическая реализация прогноза будет находиться в доверительном интервале . Верхняя граница доверительного интервала составит
= 38,715 + 14,0 = 52,715(млрд. руб.).
Нижняя граница доверительного интервала составит: = 38,715 - 14,0 = 24,715(млрд. руб.).
Относительная величина различий значений верхней и нижней границ составит: = раза. Это означает, что верхняя граница в 2,13 раза больше нижней границы, то есть точность выполненного прогноза весьма невелика, но его надёжность на уровне 95% оценивается как высокая. Причиной небольшой точности прогноза является повышенная ошибка аппроксимации. Здесь её значение выходит за границу 5-7% из-за недостаточно высокой типичности линейной регрессии, которая проявляется в присутствии единиц с высокой индивидуальной ошибкой. Если удалить территории с предельно высокой ошибкой (например, Дагестан с ), тогда качество линейной модели и точность прогноза по ней заметно повысятся.
Задача № 2.
Производится анализ значений социально – экономических показателей по территориям Северо-Западного федерального округа РФ за 2000 год.
У - Оборот розничной торговли, млрд. руб.;
Х 1– кредиты, предоставленные в 2000 году предприятиям, организациям, банкам и физическим лицам, млрд. руб.;
Х 2 – доля лиц с высшим и незаконченным высшим образованием среди занятых, %;
Х 3 – годовой доход всего населения, млрд. руб.
Требуется изучить влияние указанных факторов на стоимость валового регионального продукта.
Предварительный анализ исходных данных по 10 территориям выявил наличие двух территорию (г. Санкт-Петербург и Вологодская обл.) с аномальными значениями признаков. Эти территории должны быть исключены из дальнейшего анализа. Значения приводимых показателей рассчитаны без учёта указанных двух аномальных единиц.
При обработке исходных данных получены следующие значения:
а) - линейных коэффициентов парной корреляции, средних и средних квадратических отклонений -σ:
N=8.
У |
Х1 |
Х2 |
Х3 | |
У |
1 |
0,2461 |
0,0117 |
0,9313 |
Х1 |
0,2461 |
1 |
0,8779 |
0,0123 |
Х2 |
0,8779 |
0,8897 |
1 |
-0,2041 |
Х3 |
0,9313 |
0,0123 |
-0,2041 |
1 |
Средняя |
13,64 |
0,2134 |
22,29 |
24,69 |
σ |
4,250 |
0,1596 |
2,520 |
9,628 |
Б)-коэффициентов частной корреляции
У |
Х1 |
Х2 |
Х3 | |
У |
1 |
0,3134 |
-0,0388 |
0,9473 |
Х1 |
0,3734 |
1 |
0,8483 |
-0,2322 |
Х2 |
-0,0388 |
0,8483 |
1 |
-0,1070 |
Х3 |
0,9473 |
-0,2322 |
-0,1070 |
1 |
Задание:
1. По значениям линейных
коэффициентов парной и
2. Выполните расчёт бета коэффициентов ( ) и постройте с их помощью уравнение множественной регрессии в стандартизованном масштабе. Проанализируйте с помощью бета коэффициентов ( ) силу связи каждого фактора с результатом и выявите сильно и слабо влияющие факторы.
3. По значениям -коэффициентов рассчитайте параметры уравнения в естественной форме (то есть a1, a2, и a0). Проанализируйте их значения. Сравнительную оценку силы связи факторов дайте с помощью общих (средних) коэффициентов эластичности - .
4. Оцените тесноту множественной связи с помощью R и R2, а статистическую значимость уравнения и тесноту выявленной связи - через F-критерий Фишера (для уровня значимости а = 0,05).
5. Рассчитайте прогнозное значение результата , предполагая, что прогнозные значения факторов составят 108,5 процента от их среднего уровня.
6. Основные выводы оформите аналитической запиской
Решение:
1. Представленные в
условии задачи значения
В данном случае, межфакторное взаимодействие оценивается как заметное, а фактор слабо связан с результатом. Таким образом, первая из рассмотренных пар факторных признаков (X1 и X3 ) в большей мере отвечает требованиям, предъявляемым МНК к исходным данным и, в частности, к отсутствию межфакторного взаимодействия. Указанные обстоятельства позволяют использовать X1 и X3 в качестве информативных факторов уравнения множественной регрессии.
2. При построении двухфакторной регрессионной модели воспользуемся для упрощения расчётов методом стандартизованных переменных. В этом случае, исходное уравнение приобретает вид: . Выполним расчёт - коэффициентов, используя значения известных по условию линейных коэффициентов парной корреляции.
Параметры данного уравнения представляют собой относительные оценки силы влияния каждого из факторов на результат. При увеличении первого фактора на одну сигму - (от своей средней) оборот розничной торговли увеличивается на 0,235 своей сигмы; с увеличением второго фактора на результат увеличивается на 0,928 . В данном случае, увеличение розничного товарооборота происходит, прежде всего, под влиянием третьего фактора и в меньшей степени – в результате увеличения первого фактора.
3.По значениям коэффициентов регрессии можно судить о том, на какую абсолютную величину изменяется результат при изменении каждого фактора на единицу (от своей средней).
С увеличением первого фактора на 1 единицу результат увеличивается на 6,258 млрд. руб., с увеличением третьего фактора на 1 единицу увеличивается на 0,409 млрд. руб.
Но так как признаки-факторы измеряются в разных единицах, сравнивать значения их коэффициентов регрессии не следует. Точную оценку силы связи факторов с результатом дают коэффициенты эластичности и β - коэффициенты.
4. Для сравнительной
оценки силы связи выполним
расчёт средних коэффициентов
эластичности. С их помощью можно
определить, на сколько процентов
изменяется результат при
6. Тесноту выявленной зависимости розничного товарооборота от инвестиций в экономику региона и от численности населения оценивают множественный коэффициент корреляции и детерминации. Расчёт коэффициента корреляции выполним, используя известные значения линейных коэффициентов парной корреляции и β – коэффициентов: Как показали расчёты, установлена весьма тесная зависимость розничного товарооборота от первого и третьего фактора. Это означает, что 92,2% вариации розничного товарооборота определены вариацией данных факторов. Оставшиеся 7,8% вариации результата сформировались под влиянием прочих причин, роль которых незначительна.
7. Оценка статистической
значимости или надёжности
Для проверки выдвинутой нулевой гипотезы используется F-критерия Фишера. Его фактическое значение определяется, исходя из соотношения факторной и остаточной дисперсий и их степеней свободы: d.f.1=k и d.f.2=n-k-1; где: n –число изучаемых единиц; k – число ограничений, которые накладываются на исходные данные при расчёте данного показателя. Здесь k равно числу факторов уравнения, то есть k=2.
Фактическое значение критерия показывает, что детерминация, сформированная под воздействием двух изучаемых факторов, почти в 30 раз больше, чем детерминация, связанная с действием прочих причин. Очевидно, что подобное соотношение случайно сформироваться не может, а является результатом влияния существенных, систематических факторов.
Для принятия обоснованного решения Fфактич. сравнивается с Fтабличн., которое формируется случайно и зависит степеней свободы факторной (d.f.1 = k) и остаточной (d.f.2 = n-k-1) дисперсий, а также от уровня значимости α=0,05. В нашем примере, где d.f.1=k= 2 и d.f.2=n-k-1 = 8-2-1=5 при α=0,05 Fтабл = 5,79. В силу того, что Fфактич =29,551> Fтабл. = 5,79, можно с высокой степенью надёжности отклонить нулевую гипотезу, а в качестве альтернативы – согласиться с утверждением, что проверяемые параметры множественной регрессионной модели неслучайны, что коэффициенты уравнения и показатели тесноты связи не являются случайными величинами.
8. Техническая часть
прогнозных расчётов по
Если кредиты, предоставленные в 2000 году предприятиям, организациям, банкам и физическим лицам возрастут до 0,232 млрд. руб., а годовой доход всего населения составит 26,789 млрд. руб., тогда следует ожидать, что розничный товарооборот возрастёт до 14,615 млрд. руб., то есть увеличится на 7,2% от своего среднего уровня.
Задача 3.
Для проверки рабочих гипотез (№1 и №2) о связи социально-экономических показателей в регионе используется статистическая информация за 2000 год по территориям Центрального федерального округа.
У1 –среднегодовая стоимость основных фондов в экономике, млрд. руб.;
Y2 – стоимость валового регионального продукта, млрд. руб.;
Х1 – Инвестиции прошлого, 1999, года в основной капитал, млрд. руб.;
Х2 – кредиты прошлого, 1999, года, предоставленные предприятиям, организациям, банкам и физическим лицам, млрд. руб.;
Х3 - среднегодовая численность занятых в экономике, млн. чел.
Предварительный анализ исходных данных по 18 территориям выявил наличие трёх территорий (г. Москва, Московская обл., Воронежская обл.) с аномальными значениями признаков. Эти единицы должны быть исключены из дальнейшего анализа. Значения приводимых показателей рассчитаны без учёта указанных аномальных единиц.
Рабочие гипотезы:
При обработке исходных данных получены следующие значения линейных коэффициентов парной корреляции, средних и средних квадратических отклонений -σ: N=15.