Критерий согласия. Практический пример применения критерия согласия. Закон Менделя

Автор работы: Пользователь скрыл имя, 23 Февраля 2015 в 18:59, курсовая работа

Краткое описание

В данной курсовой работе рассказано о наиболее распространенных критериях согласия – омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова. Особенное внимание уделено случаю, когда необходимо проверить принадлежность распределения данных некоторому параметрическому семейству, например, нормальному. Эта весьма распространенная на практике ситуация из-за своей сложности исследована не до конца и не полностью отражена в учебной и справочной литературе.

Содержание

ВВЕДЕНИЕ

РАЗДЕЛ I. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ КРИТЕРИЯ СОГЛАСИЯ

1.1 Критерии согласия Колмогорова и омега-квадрат в случае простой гипотезы

1.2 Критерии согласия χ2 Пирсона для простой гипотезы

1.3 Критерии согласия для сложной гипотезы

1.4 Критерии согласия χ2 Фишера для сложной гипотезы

1.5 Другие критерии согласия. Критерии согласия для распределения Пуассона

РАЗДЕЛ II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КРИТЕРИЯ СОГЛАСИЯ

ВЫВОД

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Вложенные файлы: 1 файл

реферат.doc

— 130.50 Кб (Скачать файл)

 

 

 

Рис. 4.1 функции распределения хи-квадрат с8,10,18 и 20 степенями свободы.

 

 

При больших r относительное развитие между квантилями распределений χ2 с (r – 3) и (r – 1) степенями свободы невелико. Поэтому последствия такой ошибки не опасны. Но при r следует действовать «по теории».

 

Из-за всех этих сложностей, условий и оговорок можно сделать вывод, что для проверки гипотезы о нормальности выборки критерий Р. Фишера подходит плохо. Правильнее вместо этого использовать модификации критериев Колмогорова или омега-квадрат. Но для многих распределений вероятностей (например – дискретных) другой возможности, чем обсуждаемый критерий хи-квадрат Фишера, просто нет.

 

 

1.5 Другие  критерии согласия. Критерии согласия для распределения Пуассона

 

 

Еще одна возможность для проверки согласия, которой тоже часто пользуются. Состоит она в том, что проверяют не исходную гипотезу целиком, а какие-либо ее последствие, которое считается важным. Для нормальной случайной величины ξ коэффициент асимметрии равен нулю.

 

                                                                         (5.1)

 

 

Поэтому коэффициент асимметрии выборки

 

 

                                                                                     (5.2)

 

тоже должен быть близок к нулю, если эта выборка – нормальная.

 

Чтобы судить о том, значимо ли отличается от нуля выборочное значение (5.2), и тем самым, не нарушено ли обязательное для нормального закона соотношение (5.1), надо знать, как распределена статистика (5.2) при гипотезе. Для малых выборок исследование подобных вопросов возможно далеко не всегда и, во всяком случае, требует особого рассмотрения в каждом случае. Иное дело большие выборки.

 

Есть стандартная методика, которая позволяет справится с этой задачей. Покажем ее действие на другом примере, поскольку о нормальном законе говорилось лишком много. Посмотрим, как можно проверить согласие выборки с распределением Пуассона. Для случайной величины ξ, распределенной по Пуассону

 

 

Dξ/Мξ = 1,                                                                                      (5.3)

 

 

так как для распределения Пуассона Dξ = Мξ = λ, где λ – параметр распределения. Поэтому если выборка х1, …, хп извлечена из пуассоновской генеральной совокупности, то отношение должно быть близким к 1. Ниже пойдет речь о том как проверить.

 

 

                                                               (5.4)

 

Но сначала одно замечание общего характера: такие проверки никак не могут доказать соответствия выборки теоретическому закону даже при неограниченном возрастании числа наблюдений. Причина в том, что соотношение типа (5.1) и (5.3) не являются характеристиками: даже если (5.1) справедливо, оно не означает, что ξ непременно распределено нормально. Это свойство необходимо для нормальности распределения, но не достаточно. То же самое можно сказать о (5.3): это необходимое, но не достаточное условие для того, чтобы распределение было пуассоновским. После этого обсуждения обратимся к изучению свойств статистики (5.4). объем выборки п будет считать большим.

 

Воспользуемся тем, что при n → ∞ случайные величины S2 – Dξ и х – Мξ стремятся к 0 (закон больших чисел). Поэтому для пуассоновской выборки:

 

 

 

 

Многоточие заменяет случайную величину, убывающую как n-1. раскрыв скобки, получаем, что:

 

 

 

 

Исследуем при n → ∞ поведение выражения

 

 

 

 

главной случайной составляющей дроби

 

 

 

Без ущерба для точности вывода вместо S2 можно взять случайную величину:

 

 

 

 

Тогда вместо S2 – х появляется:

 

 

 

 

В силу центральной предельной теоремы эта сумма независимых и одинаково распределенных случайных величин распределена приблизительно нормально, с математическим ожиданием:

 

 

М[(ξ – λ)2 – ξ] = 0 и дисперсией

 

 

 

 

Для вычисления последнего выражения надо знать, что четвертый и третий центральные моменты пуассоновского распределения равны соответственно

 

 

 

 

После этого подсчет дает, что D[(ξ – λ)2 – ξ] = 2λ2. Следовательно, статистика (5.4)  распределена приблизительно по закону N(1, 2λ2/ n).

 

Зная распределение статистики (5.4) в случае справедливости нулевой гипотезы о принадлежности выборки к распределению Пуассона, можно указать пределы, в которые с вероятностью приблизительно, скажем, 0.99 должно попадать отношение  в случае справедливости гипотезы:

 

 

                                                                          (5.5)

 

 

где, и0 обозначает квантиль уровня α стандартного нормального распределения.

 

Если мы хотим использовать это соотношение для практической проверки гипотезы о пуассоновском распределении выборки, надо заметить неизвестное значение λ его оценкой по выборке. Для больших выборок наилучшей является оценка наибольшего правдоподобия. Которая для пуассоновского распределения равна х. следовательно, надо проверить по выборке, выполняется ли соотношение:

 

 

                                   (5.6)

 

 

Если это неравенство не выполняется, гипотезу о том, что выборка извлечена из распределения Пуассона, следует отвергать на уровне значимости (примерно) 0.01. понятно, что при другом уровне значимости в правой части (5.5) будет стоять другая квантиль и поэтому правая часть (5.6) тоже будет другой.

 

Поскольку этот способ проверки приближенный, то чем большего объема окажется выборка в нашем распоряжении, тем точнее будет соблюден номинальный уровень значимости. К сожалению, трудно сказать определенно, начиная с каждого n результат такой проверки заслуживает доверия; по-видимому, для этого требуется не менее сотни наблюдений.

 

Подобным образом может быть проверено любое свойство теоретического распределения, если только мы располагаем достаточно большой выборкой. Главное здесь – выбор самого свойства. Эта характеристика распределения должна быть существенна для дальнейшего. Как правило, знания о типе распределения нужны для того, чтобы на их основе сделать по выборочным данным те или инее выводы. Нередко оказывается, что для справедливости этих выводов особенно важны лишь ее которые свойства теоретического закона распределения. Именно эти свойства и надо в первую очередь проверить.

 

 

РАЗДЕЛ II. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КРИТЕРИЯ СОГЛАСИЯ

 

 

Все рассмотренные до сих пор критерии принято относить к группе так называемых параметрических критериев. Применение этих критериев требует знания типа распределения наблюдаемых случайных величин (нормальное, биномиальное, пуассоновское, двумерное нормальное или какое-либо иное) и проверяемая гипотеза касается параметров данных распределений. Прежде чем применять параметрические методы, необходимо убедиться в том, что мы действительно имеем дело с распределением требуемого типа.

 

Предположение о виде распределения случайной величины – это статистическая гипотеза, которую можно проверить с помощью экспериментальных данных. Критерии, позволяющие решать такого рода задачи, называются критериями согласия – согласия выборочных данных некоторому наперед заданному теоретическому распределению.

 

При проверке гипотезы о нормальности распределения с неизвестными средним и дисперсией критерий Колмогорова-Смирнова является более мощным, чем критерий .

 

При проведении данных исследований, в которых реализован ряд критериев проверки согласия эмпирического распределения с теоретической моделью:  Пирсона, отношения правдоподобия, Колмогорова, Смирнова,  и  Мизеса, Никулина. Здесь и ниже, когда мы употребляем словосочетание “хорошее согласие”, то подразумеваем, что по всем критериям достигнутый уровень значимости, определяемый соотношением

 

 

 

 

где  - значение статистики критерия, вычисленное по наблюдаемой выборке,  - плотность предельного распределения статистики соответствующего критерия при справедливости гипотезы , был очень высок:

 

 

³0,6-0,9

 

 

Например, на (Приложения рис.2) представлены результаты моделирования распределения статистики  при вычислении оптимальных L-оценок [5] двух параметров нормального распределения при числе интервалов . На рисунке приведены построенная в результате моделирования эмпирическая функция распределения статистики , функция теоретического -распределения и значения достигнутого уровня значимости  при проверке согласия по каждому из используемых критериев.

 

Если же оценки параметров искать по точечным выборкам (по исходным негруппированным наблюдениям), то предельные распределения статистики  не являются -распределениями. Более того, распределения статистики  становятся зависящими от того, как разбивается область определения случайной величины на интервалы [5]. Как выглядят распределения статистики  при использовании ОМП по точечным выборкам по сравнению с -распределениями иллюстрирует (Приложения рис. 3), на котором приведены распределения  при асимптотически оптимальном группировании (АОГ) и при разбиении на интервалы равной вероятности (РВГ) в случае проверки согласия с нормальным распределением с оцениванием двух его параметров и числе интервалов . При оценивании параметров нормального закона по группированной выборке статистика  подчинялась бы в данном случае -распределению. Как подчеркивает (Приложения рис. 3), распределения статистики  и  очень существенно отличаются от -распределения. Игнорирование этого факта на практике часто приводит к неоправданному отклонению проверяемой гипотезы, к увеличению вероятности ошибок первого рода.

 

Зная предельные распределения  и  статистики , для любого заданного уровня значимости  можно оценить мощность соответствующего критерия, рассматривая её как функцию от числа интервалов  при заданном объеме выборки . Было проведено исследование мощности критериев Пирсона и Никулина как функции от  и  аналитически и методами статистического моделирования. Причем результаты аналитических вычислений оказались полностью подтвержденными оценками мощности, полученными на основании моделирования.

 

Величина мощности для критериев типа  может быть вычислена в соответствии с выражением:

 

 

 

 

где  - параметр нецентральности,  представляет собой - процентную точку -распределения с  степенями свободы ( - заданная вероятность ошибки первого рода,  - вероятность ошибки второго рода). Все приводимые ниже функции мощности строились при уровне значимости .

 

На (Приложение рис. 4) в зависимости от числа интервалов  при равновероятном и асимптотически оптимальном группировании для объема выборок , равного 500 и 5000, представлены функции мощности критерия  Пирсона при проверке простой гипотезы о согласии с экспоненциальным законом (:  при ; против :  при ). И в том, и в другом случае с ростом  мощность падает, но в случае асимптотически оптимального группирования она выше, чем при равновероятном.

 

Аналогично, на (Приложения рис. 5) приведены функции мощности критерия  Пирсона как функции числа интервалов  для , равного 300 и 2000, при проверке простой гипотезы относительно нормального закона

 

 

(:

 

 

при , ; против : нормальный закон при , ).

 

На рис. 5 приведены функции мощности критерия  Пирсона при проверке сложной гипотезы о согласии с распределением Вейбулла. Рассматривались гипотеза

 

 

:

 

 

при ,  и близкая альтернатива – распределение Накагами

 

 

:

 

при , ,

 

 

Рис. 7 иллюстрирует поведение функции мощности критерия типа Никулина при использовании равновероятного группирования и проверке сложной гипотезы о согласии с нормальным законом

 

 

:

 

 

когда в качестве альтернативы рассматривается близкий ему логистический закон

 

 

:

 

при значениях параметров , .

 

 

Если для конкретной выборки мы отклоняем гипотезу о нормальности, и, следовательно, не имеем права пользоваться методами, основанными на нормальности, то для получения статистических выводов можно поступать разными способами. Например, если объем выборки достаточно велик, можно предпочесть использовать параметрические критерии как приближенные. Другой путь состоит в подборе замены переменной, приводящей к нормальному распределению[9]. Третий путь - применение непараметрических критериев.

 

Пример. Пусть получена следующая выборка 50 значений случайной величины  с неизвестным распределением: (см. Таблица 1)

 

Проверим гипотезу о том, что эта случайная величина имеет нормальное распределение. После разбиения области изменения выборочных значений на 5 равных интервалов получаем следующие наблюденные и гипотетические частоты:(см. Приложения Таблица 2)

 

Гипотетические частоты вычислялись для нормального распределения

 

 

 

 

с параметрами, оцененными по выборке - соответственно, число степеней свободы статистики критерия равно 5-1-2=2. Выборочное значение статистики равно , что не выходит за критический 5%-ный предел, равный . Следовательно, у нас нет оснований отвергнуть гипотезу о нормальности.

 

В действительности, выборка была получена с помощью датчика случайных чисел, равномерно распределенных на отрезке [0, 100]. Т.е. мы видим, что при данном числе наблюдений (в общем-то, конечно, небольшом для проверки гипотезы о типе распределения) критерий  не обнаруживает отклонения от нормальности в направлении равномерности.

 

Величина статистики одновыборочного критерия Колмогорова - Смирнова равна D=0.11, что также не выходит за 5%-ный предел этого критерия в предположении, что гипотетические средние равны выборочным. Однако в случае неизвестных параметров гипотетического нормального распределения лучше пользоваться модификацией критерия Колмогорова - Смирнова, предложенной Cтефенсом (Лиллифорсом). Но в этом случае значение

 

 

 

 

т.е. нет оснований отвергнуть гипотезу и по этому критерию.

 

Пример. Расчеты, аналогичные предыдущим, проведенные для выборки объема 150 значений случайной величины, равномерно распределенной на отрезке [0, 100], дали значение , что позволило отвергнуть гипотезу о нормальности на уровне значимости 5%. По критерию Колмогорова - Смирнова гипотеза отвергалась лишь на уровне 10%, а по критерию Лиллифорса - на уровне 1%, что показывает неправомочность применения критерия Колмогорова - Смирнова в данной ситуации.

 

Пример. Расчеты статистик критериев согласия для данных таблицы 1, содержащей 50 выборочных значений длины лепестка ириса разноцветного, приводят к значению статистики  равному 2.1, и значению статистики , равному 0.117. В этом случае гипотеза о нормальности не отвергается ни критерием , ни критерием Колмогорова - Смирнова - Лиллифорса.

 

Пример. В некоторых классических экспериментах с селекцией гороха Мендель наблюдал частоты различных видов семян, получаемых при скрещивании растений с круглыми желтыми семенами и растений с морщинистыми зелеными семенами. Они приводятся ниже вместе с теоретическими вероятностями, вычисленными в соответствии с теорией наследственности Менделя. (см. Приложения Таблица 3)

Информация о работе Критерий согласия. Практический пример применения критерия согласия. Закон Менделя