Автор работы: Пользователь скрыл имя, 10 Сентября 2014 в 15:48, курс лекций
1. Основные понятия и определения экономики региона
2. Типы и виды экономик. Экономические системы и их сущность
3. Теории размещения регионального производства
4. Пространственная организация и специализация хозяйства
5. Методы исследований в региональной экономике
6. Основы регионального управления экономикой
7. Региональное развитие: цели, критерии и методы управления
8. Основы муниципального менеджмента
9. Региональное размещение и регулирование региональных пропорций
10. Организация муниципального управления в условиях корпоративной экономики
11. Факторы социально-экономического развития и конкурентоспособности регионов
12. Методы управления региональной экономикой
13. Воспроизводственные процессы в регионе
14. Организация управления экономикой региона
15. Принципы управления
16. Финансовая система региона
Если данный рабочий пункт лежит внутри своей критической изодапаны, то перемещение производства из транспортного пункта в рабочий пункт выгодно, а если вне ее, то перемещение невыгодно. Например, если для рабочего пункта P1критической изодапаной является А3,то предприятие предпочтительнее разместить в транспортном пункте Р. Если критической изодапаной является А4, то предприятие целесообразно разместить в рабочем пункте P1.
Агломерационная ориентация. Анализ влияния агломерационных факторов на размещение промышленного предприятия Вебер провел на базе оценки изменений, вызываемых процессами агломерации, в оптимальной схеме размещения производства, полученной на основе транспортной и рабочей ориентаций. Для этого он ввел дополнительное понятие — индекс сбережений. Смысл этого понятия поясним на следующем простом примере.
Пусть различным объемам агломерированной массы (например, годовым выпускам продукции) соответствуют различные удельные издержки:
Уменьшение удельных издержек при росте объема производства отражает эффект концентрации. Разница в издержках для агломерированных масс по сравнению с первым уровнем концентрации производства составит: для второго уровня — 4(10 - 6); для третьего — 6(10 - 4); для четвертого — 7(10 - 3). Полученные величины (4; 6; 7) и представляют собой те сбережения, которые получаются для различных степеней агломерации и повышаются при укрупнении производства. Эти величины Вебер и называл индексами сбережений при агломерации.
Проводимый анализ влияния фактора агломерации на размещение производства предполагает отсутствие влияния всех других факторов, кроме транспортного. Исходя из транспортной ориентации отыскиваются отклонения производства транспортных пунктов, обусловленные действием фактора агломерации. Такие отклонения целесообразны, если издержки отклонения перекрываются сбережениями в агломерационных пунктах.
Дни определения места размещения агломерационного производства вокруг транспортных пунктов проводятся изодапаны, среди которых выделяется критическая изодапана, т.е. геометрическое место точек, где перерасход транспортных затрат равен экономии от агломерации производства. Вебер утверждает, что отклонение изолированных производств от транспортных пунктов имеет смысл только тогда, когда все отклоняющиеся производства, не выходя за пределы своих критических изодапан, соединятся в каком-то одном месте. Таким местом является площадь общего сегмента, образованного пересекающимися критическими изодапанами, так как только внутри этого сегмента издержки отклонения для каждого производства не превышают той выгоды, которая получается от соединения, т.е. не превышает агломерационных сбережений. Иллюстрацией этого рассуждения является рис. 3.4.
Агломерируемые производства должны размещаться в штрихованном сегменте. Выбор точки размещения происходит с учетом транспортного фактора. В более общем случае несколько предприятий образуют не один, а несколько сегментов.
А. Вебер рассматривает различные ситуации при осуществлении агломерации, конкретизируя методику нахождения штандорта. Он предлагает формулы агломерационных эффектов.
Пусть М — производственная масса какого-либо крупного производства. Величина сбережений от агломерации в расчете на единицу продукта будет выражаться в виде функции сбережения — f(M). Тогда общая величина сбережений на всю производственную массу составит:
Э1 = М f(M).
Допустим, что с крупным производством сливается мелкое производство с производственной массой т. Тогда общая суммасбережения для двух производств составит:
Э2 = (М + т) f(M + т).
Определим приращение сбережения, получаемого в результате слияния двух производств:
Э = Э2 − Э1 = (М + т) f(M + т) − M f(M)
Cлияние
мелкого производства с
где А — штандортный вес; R — радиус отклонения; S —ставка транспортного тарифа (т/км)
Отсюда можно определить величину наибольшего, экономики допустимого, радиуса отклонения.
Определяем первую производную функции:
Функция f(M), называемая функцией агломерации, служит выражением притягательной силы крупного производства по отношению к рассеянным мелким производствам. Поскольку f(M) = ARS, то R = f(M) : AS, т.е. максимально допустимый радиус отклонения прямо пропорционален функции агломерации и обратно пропорционален штандортному весу и тарифной ставке.
Выведенная формула агломерации f(M) = ARS включает три фактора, от которых зависит агломерация. Требуется учесть еще одно условие — производственную плотность.
Обозначим через р производственную плотность, под которой здесь понимается объем продукции, приходящейся на единицу площади с радиусом R, при равномерном распределении производства на данной площади. Тогда вся производственная масса, притягиваемая к агломерационному центру, будет равна πR2p = М. Отсюда
Сравнивая полученную формулу с ранее выведенной, получаем окончательную формулу агломерации
А. Веберу первому удалось выработать многофакторную теорию размещения промышленного предприятия, опирающуюся на методы количественного анализа (математическое моделирование). Так же как и его предшественник В. Лаунхардт, А. Вебер не вышел за рамки проблемы размещения отдельного предприятия. Однако его исследования стали мощным стимулом для создания более общих теорий размещения.
Первую теорию о функциях размещения системы населенных пунктов (центральных мест) в рыночном пространстве выдвинул В. Кристаллер в своем труде "Центральные места в южной Германии", опубликованном в 1993 г. Теоретические выводы он обосновал эмпирическими данными.
Центральными местами В.Кристаллер называет экономические центры, которые обслуживают товарами и услугами не только себя, но и население своей округи (зоны сбыта). Согласно В. Кристаллеру, зоны обслуживания и сбыта с течением времени имеют тенденцию оформляться в правильные шестиугольники (пчелиные соты), а вся заселенная территория покрывается шестиугольниками без просветов (кристаллеровская решетка). Благодаря этому минимизируется среднее расстояние для сбыта продукции или поездок в центры для покупок и обслуживания.
Теория В. Кристаллера объясняет, почему одни товары и услуги должны производиться (предоставляться) в каждом населенном пункте (продукты первой необходимости), другие — средних поселениях (обычная одежда, основные бытовые услуга и т.п.), третьи — только в крупных городах (предметы роскоши, театры, музеи и т.д.)
Каждое центральное место имеет тем большую зону сбыта, чем выше уровень иерархии, к которому оно принадлежит. Кроме продукции, необходимой для зоны своего ранга (своего шестиугольника), центр производит (предоставляет) товары и услуги, типичные для всех центров низших рангов.
Тип иерархии определяется числом центральных мест данного уровня. Число подчиненных центральных мест, увеличенное на единицу, обозначается буквой К. Любой центр всегда имеет зависимое от него одинаковое количество поселений, занимающих более низкую ступень.
Рассмотрим, например, случай, когда имеется трехступенчатая иерархия поселений: город — поселок — деревня. Тогда при К = 7 вокруг каждого города будет расположено 6 поселков, а вокруг каждого поселка — 6 деревень, т.е. вокруг города будет всего 6 поселков и 36 деревень. При четырехступенчатой иерархии (город — поселок — поселение — деревня) вокруг города разместятся 6 поселков, 36 поселений и 216 деревень и т.д. Общая формула для отражения данной зависимости имеет следующий вид:
Mn =(K − 1)n ,
где Mn — число зависимых мест на той или иной степени иерархии; п — ступень иерархии.
Количество возможных типов иерархии в принципе может быть любым. Однако наибольшее внимание В. Кристаллер и его последователи уделяли анализу трех типов, или вариантов, иерархии при К = 3, 4, 7. Эти варианты иерархии систем расселения интерпретируются следующим образом.
Вариант при К = 3 обеспечивает оптимальную конфигурацию рыночных зон (территорий, население которых приобретает товары и услуги в данном центральном месте). Обслуживание территории достигается наименьшим возможным числом центральных мест. При этом каждое центральное место обслуживается тремя центральными местами следующего, более высокого уровня иерархии и находится на равных расстояниях от них.
Вариант при К = 4 создает наилучшие условия для строительства транспортных путей, так как в этом случае наибольшее число центральных мест будет расположено на одной трассе, соединяющей более крупные города, что обеспечит минимальные издержки на строительство дороги, т.е. данное центральное место будет находиться на кратчайшем расстоянии до двух ближайших центров более высокого уровня иерархии.
Вариант при К = 7 представляется целесообразным, если необходим четкий административный контроль. В этом случае все центральные места, зависимые от данного места, полностью входят в его зону.
Из приведенных примеров видно, что функции поселений различны, каждое их них имеет свой радиус влияния и притяжения. В соответствии с этим возможны и разные способы территориальной организации систем расселения, при которых создаются наиболее благоприятные условия для выполнения тех или иных их функций. Рассмотренные три случая, соответствующие значениям показателя К, можно интерпретировать как рыночную, транспортную и административную ориентации в формировании территориальной структуры расселения.
Теория центральных мест В. Кристаллера хотя и носит крайне абстрактный характер, но позволяет сформулировать общие представления о целесообразном расселении на той или иной территории. Ее можно рассматривать как теорию, дающую идеальный эталон системы расселения, с которым следует сравнить складывающиеся в реальности системы расселения с целью выявления направлений их совершенствования. Известны также примеры практического применения теории центральных мест к решению конкретных проблем территориальной организации хозяйства и расселения в различных странах.
Многие учебники микроэкономики начинаются с анализ механизма спроса и предложения на товарном рынке, демонстрируя при этом модель рыночного равновесия, где предполагается, что спрос на товар D падает при увеличении цены Р, предложение товара S, наоборот, растет при увеличении цены (рис. 3.6). Пересечение обратных функций спроса и предложения QD = D(P) и QS = S(P) дает точку равновесия спроса и предложения Q* и цену равновесия Р*:
Q* = D (Р*) = S (Р*).
Приведенная широко известная модель имеет, однако, принципиальный недостаток: она игнорирует влияние пространства или (что по сути то же самое) допускает, что рынок является точкой. Для теории пространственной или региональной экономики такие предположения неприемлемы. По-видимому, первым, кто обратил внимание на это несоответствие (еще в 1838 г.), был французский экономист — математик О. Курно.
Начальный шаг анализа механизма спроса и предложения в экономическом пространстве — это рассмотрение пространственно разделенных автономных региональных рынков. Очевидно, что в каждом полностью автономном регионе будут устанавливаться свое рыночное равновесие спроса и предложения и свои цены рыночного равновесия, т.е. в каждом регионе описанная выше модель будет "работать" автономно.
Ситуация принципиально усложняется, если региональные рынки связываются друг с другом. Проведем анализ двух рынков региональной системы, производящей и потребляющей однородный товар.
Пусть А1 — цена равновесия для автономного региона 1; А2— то же для автономного региона 2; Т1,2 — транспортные затраты на доставку единицы товара из региона 1 в регион 2; Т2,1— транспортные затраты на доставку единицы товара из региона 2 в регион 1. Задача состоит в том, чтобы определить объемы производства, межрегиональные поставки товара и цены равновесия (Р1* и Р2*) в системе связанных региональных рынков.
Пусть для определенности А2 > А1. Тогда у производителей (продавцов) возникает стимул для поставки товара из региона 1 в регион 2 с целью реализации его по более высокой цене. Последствие открытия региональных рынков будет зависеть от соотношения разницы А2 — А1 и транспортных затрат Т1,2 .
Если оказывается, что А2— А1 < Т1,2 ,то межрегиональная торговля неэффективна, поскольку выигрыш производителя (продавца) региона 1 на цене реализуемого товара меньше транспортных затрат. В этом случае состояние равновесия региональных рынков сохраняются такими же, как и при автономном их функционировании. Более интересен вариант, когда А1 = А2 . Тогда выгодно поставлять товар из региона 1 в регион 2, а на каждом региональном рынке установится новое равновесие. Цены равновесия будут удовлетворять условию Р2* = Р1* + Т1,2 (причем Р1* > А1; Р2* < А2) ,а вывоз товара из региона 1 в регион 2 будет равен ввозу товара в регион 2 из региона 1 (с обратным знаком):
E1,2 = E2,1 .
Выведение условий рыночного равновесия для многорегиональной системы представляет собой принципиально более сложную математическую задачу. До создания мощных компьютеров и алгоритмов нахождения состояния равновесия в задачах большей размерности предпринимались попытки моделирования решений с помощью особых методик. В настоящее время решение таких задач не представляет чрезмерной сложности.
Теоретические принципы производственной специализации регионов и межрегиональной торговли формально (понятийно, терминологически) были впервые выведены в рамках теорий международных экономических отношений, т.е. международниками а не регионалистами. В связи с этим необходимо назвать классиков английской политической экономики А. Смита и Д. Рикардо и шведских экономистов Э. Хекшера и Б. Олина. Почему же полученные ими научные результаты правомерно относят к теоретическим основам региональной экономики? В гл. 1 мы отмечали наличие многих общих черт и проблем в межрегиональном и международном разделении труда, в межрегиональной и международной торговле, однако имеются и качественные различия.