Автор работы: Пользователь скрыл имя, 12 Ноября 2015 в 23:48, курсовая работа
В статических моделях можно выделить группу макроэкономических моделей. К ним относятся модели народно-хозяйственного уровня, которые предназначены для описания больших секторов экономики или экономики страны в целом. Целью макроэкономического моделирования является изучение экономических законов, связывающих наиболее важные и содержательные показатели. В целом, разработанные к настоящему времени математические модели народного хозяйства можно условно разбить на две большие группы:
модели экономического роста (часто это динамические модели);
межотраслевые балансовые модели.
СОДЕРЖАНИЕ
В практике моделирования систем наиболее часто приходится иметь дело с объектами, которые в процессе своего функционирования содержат элементы стохастичности или подвергаются стохастическим воздействиям внешней среды. Поэтому основным методом получения результатов с помощью имитационных моделей таких стохастических систем является метод статистического моделирования на ЭВМ, использующий в качестве теоретической базы предельные теоремы теории вероятностей.
На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Карло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Большинство экономико-математических моделей характеризуются статическим подходом к изучению экономики, когда ее состояние изучается на заданный момент времени. Под статической экономической системой понимается такая система, координаты которой на изучаемом отрезке времени могут рассматриваться как постоянные. Соответственно, при формулировке статической экономико-математической модели предполагается, что все зависимостиотносятся к одному моменту времени, а моделируемая система неизменна во времени. При этом полностью игнорируются возможные (а подчас даже неизбежные) изменения, поскольку их учет не требуется для достижения цели моделирования. Кроме того, предполагается, что все интересующие процессы, происходящие в системе, не требуют при своем описании развертывания во времени, т. к. могут быть с достаточной степенью точности охарактеризованы независящими от времени величинами, как известными, так и неизвестными. Поэтому в статической модели время не вводится явно. Статические модели характеризуют моделируемую систему на какойлибо фиксированный момент времени. Такой момент может представлять целый временной интервал, как правило, в качестве его конечной, средней или начальной точки, в течение которого система предполагается неизменной.
Большинство экономико-математических моделей являются статическими. Эта точка зрения настолько укоренилась в сознании большинства экономистов, что практически всегда модель считается статической, а если это не так, то только тогда указывается, что модель является динамической. В самом деле, к статическим моделям естественно приводят самые разнообразные задачи экономического анализа и планирования, которые допускают постановку проблемы при жестко фиксированной структуре моделируемой системы. Поскольку статические модели в формализованном виде не содержат фактора времени, они всегда проще, чем динамические модели тех же экономических систем, с той или иной степенью полноты учитывающих этот фактор. Поэтому для экономико-математического моделирования типична ситуация, когда сначала разрабатываются статические модели, а затем они усложняются введением фактора времени, т. е. преобразуются в динамические. В частности, статическими первоначально были модели межотраслевого баланса, разнообразные модели, сводимые к транспортной задаче и распределительной задаче линейного программирования, к задачам о потоках в сетях и т. д. Впоследствии для всех этих моделей были разработаны динамические аналоги и обобщения. Однако усложнение далеко не всегда оказывается продуктивным даже в тех случаях, когда динамический аспект моделируемой системы небезразличен для цели моделирования.
В статических моделях можно выделить группу макроэкономических моделей. К ним относятся модели народно-хозяйственного уровня, которые предназначены для описания больших секторов экономики или экономики страны в целом. Целью макроэкономического моделирования является изучение экономических законов, связывающих наиболее важные и содержательные показатели. В целом, разработанные к настоящему времени математические модели народного хозяйства можно условно разбить на две большие группы:
Модели 1-й группы оперируют крупноагрегированными показателями (валовой общественный продукт, национальный доход, объем основных фондов, фонд накопления, фонд потребления). Эти модели предназначены для изучения основных тенденций развития экономики в течение продолжительных периодов времени (порядка нескольких десятилетий). Эти модели часто представляются производственными функциями.
К статическим моделям относится большинство задач линейного программирования (максимизации выпуска в заданном ассортименте, задача о диете, об оптимальных назначениях, раскроя материалов и многие другие).
.
1 Основные понятия теории моделирования
экономических систем и процессов
Моделирование (в широком смысле) является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.
Целевое назначение моделирования на этапе внедрения и эксплуатация сложных систем - это проигрывание возможных ситуаций для принятия обоснованных и перспективных решений по управлению объектом. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на:
- полные,
- неполные
- приближенные.
В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве.
Для неполного моделирования характерно неполное подобие модели изучаемому объекту.
В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены:
- детерминированные;
- стохастические;
- статические и динамические;
- дискретные;
- непрерывные;
- дискретно-непрерывные.
Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий.
Cтохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики, т. е. набор однородных реализаций.
Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени.
Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.
В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.
Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту.
Мысленное моделирование может быть реализовано в виде:
- наглядного;
- символического;
- математического.
При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте.
В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.
Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.
Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования.
В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.
В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия.
Тезаурус - словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.
Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.
Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая модель.
Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на:
- аналитическое,
- имитационное,
- комбинированное.
Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений или логических условий. Аналитическая модель может быть исследована следующими методами:
а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;
б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;
Обеспечение требуемых показателей качества функционирования больших систем, связанное с необходимостью изучения протекания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экспериментальных исследований, взаимно дополняющих друг друга.
Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экспериментов с реальной системой либо требует больших материальных затрат и значительного времени, либо вообще практически невозможно. Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и достоверности могут быть представлены в виде аналитических соотношений или моделирующих алгоритмов, пригодных для получения соответствующих характеристик процесса функционирования исследуемых систем.
Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функционирования объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно последовательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.
Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математическую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитационную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой - имеется реальная часть объекта. Это значительно расширяет возможности и повышает достоверность результатов моделирования.
Информация о работе Основные понятия теории моделирования экономических систем и процессов