Автор работы: Пользователь скрыл имя, 09 Ноября 2013 в 21:05, реферат
Особливості формування поняття про дроби у молодших школярів являє особливий інтерес як для педагогічної психології навчання, так і для вікової психології. Дроби мають широке застосування в повсякденному житті. Це зумовлює потребу у викладанні уявлень про дроби уже в початковій школі. Разом з тим викладання дробів у молодших класах пов‘язане з певними труднощами, які з однієї сторони, змушують різко обмежити об‘єм знань про дроби, з якими ознайомлюють молодших школярів, а з другої сторони, викликає тенденцію до такого способу введення дробів, який не відповідає поняттю про них.
Міністерство освіти і науки України
РІВНЕНСЬКИЙ ДЕРЖАВНИЙ ГУМАНІТАРНИЙ УНІВЕРСИТЕТ
Реферат
На тему:
«Дроби в курсі математики початкових класів»
Виконала: студентка І курсу
педагогічного факультету
групи ПЗ – 11
Грабовська Н. В.
Перевірила: в. Приймак О. П.
Рівне 2010
ВСТУП
Особливості формування поняття про дроби у молодших школярів являє особливий інтерес як для педагогічної психології навчання, так і для вікової психології. Дроби мають широке застосування в повсякденному житті. Це зумовлює потребу у викладанні уявлень про дроби уже в початковій школі. Разом з тим викладання дробів у молодших класах пов‘язане з певними труднощами, які з однієї сторони, змушують різко обмежити об‘єм знань про дроби, з якими ознайомлюють молодших школярів, а з другої сторони, викликає тенденцію до такого способу введення дробів, який не відповідає поняттю про них.
В чому ж полягають труднощі ознайомлення з дробами? Ось що пише з цього приводу методист І.Н. Шевченко: «Звичайно, дроби дуже складні числа …», - і продовжує: «В силу того, що дріб – число більш складне, ніж ціле, вивчення дробів пов‘язане з деякими труднощами. Щоб зрозуміти дроби і вивчити дії над ними, потрібно оволодіти механізмом спільних дій не над одним, а над двома числами … Тут від учнів вимагається трохи більше напруження їх розумових сил».
Як бачимо, труднощі дробів з точки зору вивчення полягає в тому, що тут дитина повинна засвоїти механізм дії зразу над двома числами. Як же ці числа пов‘язані між собою? І.Н. Шевченко пише: «Дріб – це число, яке являє собою сукупність двох чисел». Тут не вказується характер особливостей, які властиві дробу, але по способах практичного його використання можна зробити висновок, що він являє собою відношення двох чисел. Поняття дробу припускає виділення цього відношення і вміння орієнтуватися на нього.
Формування поняття про дроби рекомендується проводити по трьох основних етапах:
1) спочатку діти засвоюють
фактичне роздроблення (ділення)
різноманітних конкретних
2) потім цю ж роботу діти проробляють уже на кресленнях (малюнки кругів, відрізків);
3) діти оперують дробами по уявленню, без будь-яких інших зовнішніх опор, крім самих записів ( і т.д.). Розглянемо детальніше зміст роботи на кожному з цих етапів.
На першому з них знаходить своє вираження життєвий досвід самих дітей, що і створює надійну основу для успішної роботи по засвоєнню цього нового розділу арифметики. Ще в дошкільному віці дітям приходилося розламувати яблука, пряники – і вже тоді вони говорили про половину чого-небудь, про чверть і про деякі другі частини цілого. В школі ж діти уже в 1 класі знайомляться з розбиттям сукупності предметів на рівні частини, уточнюють зміст термінів «половина», «чверть» тощо, працюючи з кругами, квадратами, відрізками, а пізніше відносять їх до таких мір, як кілограм, метр, літр. Завдяки цьому з 1 по 4 клас, розширюються і удосконалюються уявлення про ціле і частини, прийоми розбиття окремих предметів і їх груп на рівні частини.
Діти помічають зв‘язок між числом рівних частин і назвою кожної частини (щоб получити чверть круга, потрібно розділити його на чотири рівні частини тощо), а потім вже без наочних засобів вирішують, наприклад, такі задачі, як знаходження сьомої, дев‘ятої частини числа. В 3 класі вони можуть пояснити графічно різні частини даного відрізка (половину, третину, шосту частину тощо).
Приступаючи до спеціальної навчальної роботи над дробами, необхідно опиратися на ці знання учнів, поновити їх і систематизувати. Перші кроки в цьому напрямі можуть бути “грубо наочними: береться яблуко і розламується на дві рівні частини, в кожній руці буде половина яблука; береться стакан, наповнений водою, і половина води виливається в кольорову банку, значить у стакані залишається півстакана води” [12; 88]. Дальше можуть демонструватися частини одиниць виміру (наприклад, сантиметр – одна десята дециметра).
Вивчення часток краще всього проводити з допомогою картонних чи фанерних кругів, цілих і поділених на сектори, так як частина круга, яка демонструє ту чи іншу частину одиниці, значно відмінну від цілого круга – одиниці. Але і відрізки, і квадрати, і прямокутники, зроблені з картону чи фанери і розбити на частини, також повинні використовуватися як наочні засоби (на рис.1 показані зразки таких засобів, взяті із праці А.С. Пчілки).
|
|
|
| |||
|
|
|
| |||
|
|
|
|
Рис. 1
З їх допомогою виділяються наступні частини: половина, чверть, восьма, п‘ята і десята, а потім демонструються дроби, які складаються з цих частин .
Чи зберігає вимірювання не тільки історичне, але й актуальне дидактичне значення при введенні дробів? Багато чого промовляє на користь позитивної відповіді на це питання. Так, розглянемо міркування, висловлені ще на початку століття найбільшим німецьким математиком Ф. Клейном, що спеціально зіставляв можливі шляхи введення дробів. Аналізуючи прийняту тоді в школі методику навчання дробам, він підкреслював той момент, що в порівнянні із цілими числами тут насамперед міняється субстрат наочних образів, якими інтерпретуються дробові числа, а саме «від кількості предметів ми переходимо до вимірювання, від предметів, що підлягають рахунку, ми переходимо до предметів, що підлягають вимірюванню».
Далі Ф. Клейн шкільну методику порівнює з «новою» постановкою питання, з «сучасним викладом», у якому на перший план виступає «формальна сторона справи» і загальні властивості дробу як «числової пари». У цій новій постановці, указує Ф. Клейн, ми «залишаємося цілком на ґрунті цілих чисел». Відомими передбачаються тільки цілі числа й дії над ними. Нові числа (дробові) визначаються як числові пари, а операції над ними - суть операції над цілими числами. Ніяких принципово нових «наочних подань» тут не дається, і вони не потрібні. На противагу цьому «шкільний же виклад істотно опирається на нове наочне подання про вимірювані величини, що дають безпосереднє інтуїтивне уявлення про дроби». Потім Ф. Клейн наводить гарний приклад, що пояснює розходження «шкільної» й «нової» постановки питання: «Уявимо собі істоту, що володіє тільки ідеєю про ціле число й зовсім не знає вимірювання. Для такої істоти шкільний виклад здавався б зовсім незрозумілим.
Яка із цих точок зору краще? «Нова точка зору, безсумнівно, чистіше, але в той же час і бідніше», - відзначає Ф. Клейн. Вона дає тільки абстрактне, логічно точне введення дробів, але залишає відкритим не менш важливе питання: чи застосовна ця теоретична побудова «до вимірюваних величин, з якими нам доводиться мати справу”. Це питання в самій математиці може розглядатися самостійно. «Уявляється, однак, сумнівним, - указує Ф. Клейн, - чи можна такий поділ вважати за доцільне й з педагогічної точки зору».
Отже, позицію Ф. Клейна можна охарактеризувати в такий спосіб. По-перше, з його погляду, підхід до дробів як до пар цілих чисел хоча логічно й більше чистий, чим підхід з боку вимірювання, але й більш бідний, тому що не забезпечує застосування нових символів до вимірювання величин, «до зовнішнього світу». Саме цей недолік відсутній у шкільній традиції. По-друге, логічно чистий підхід не виводить людини за межі поняття про ціле число, не формує в неї належних наочних уявлень, що лежать в основі своєрідності дробів. Опора на вимірювання створює ці своєрідні уявлення, які досить істотні для практичної діяльності з величинами. По-третє, він захищає й підтримує педагогічну точку зору, відповідно до якої в основі переходу від цілих чисел до дробів повинне лежати нове уявлення учнів про вимірювані величини.
Досить оригінальну позицію в проблемі введення чисел у школі займав видатний французький математик А. Лебег. Він думав, що після натуральних чисел на основі виміру потрібно відразу переходити до походження й природи всієї області дійсних чисел (до нескінченних десяткових дробів), минаючи вивчення звичайних і навіть кінцевих десяткових дробів.
Зміст цих поглядів А. Лебега були докладно проаналізовані
Тут важливий насамперед наступний висновок А. Н. Колмогорова: «Одне з основних завдань книги Лебега полягає в тому, щоб показати, що підхід до побудови раціональних і дійсних чисел з погляду вимірювання величин анітрошки не менш науковий, чим, наприклад, введення раціональних чисел у вигляді «пар». Для школи ж він має безсумнівні переваги. Першою перевагою є відповідність цього підходу історичному розвитку математики й наявному в учнів повсякденному досвіду. Другим же - та обставина, що він робить необхідним введення дійсних чисел».
А. Н. Колмогоров вважає, що А. Лебег правий постановці й принциповому рішенні цієї педагогічної задачі. Він також підтримує ідею А. Лебега про те, що для школи існує одна нероздільна задача - привести учнів до можливо більше ясного розуміння концепції дійсного числа. При її рішенні важливо зберегти єдність викладання математики на різних щаблях навчання. Для цього необхідно, щоб у початковій школі учні знайомилися з операцією вимірювання одержуючи з неї кінцеві десяткові дроби. На прикладі періодичних дробів, що виникають при діленні, можна закинути ідею про нескінченний дріб. У середній школі докладніше розбирається питання про точність вимірів, а потім через ряд етапів формулюється загальне поняття дійсного числа.
Таким чином, і для А. Лебега, і для А. Н. Колмогорова введення раціональних чисел на основі вимірювання величин не менш наукове ніж у вигляді «пар», крім того, воно відповідає історичному розвитку самої математики. Остання обставина особливо важливі. Справа в тому, що в математиці та й у її викладанні, часто трапляються випадки забуття реального походження понять, що веде до втрати їх первісного матеріального змісту. А. Лебег показав, як тісно ці поняття пов'язані з аналізом реальних процесів вимірювання. Протягом всієї книги він бореться за повернення математичним поняттям їхнього первісного змісту, за з'ясування їхнього реального походження, що .є умовою продуктивного вивчення математики. «У цій боротьбі, - пише А. Н. Колмогоров, - я й бачу основний інтерес книги Лебега» [9; 11].
Саме операція вимірювання надає раціональному й дійсному числу первісний матеріальний зміст, тому що ці числа є «знаряддям виміру величин» [10; 73]. На основі цієї операції в учнів можна сформувати правильне поняття про раціональні дроби, а потім підготувати ґрунт для переходу до ірраціональних чисел, тобто для роботи у всій області дійсних чисел. При цьому ті самі поняття спочатку повинні будуватися на наочній базі, потім формулюватися вже більш чітко й, нарешті, піддаватися тонкому логічному аналізу (останнє характерно для старших класів).
Як бачимо, загальна лінія, пов'язана із введенням дробів у школі, однакова у Ф. Клейна, А. Лебега й А. Н. Колмогорова. Відповідно до їхніх положень дроби по первісному походженню й матеріальному змісту мають тільки одне джерело вимірювання величин. У їхніх роботах взагалі немає мови про такі джерела, як ділення речей і чисел вимірювання величин й історично, і в сучасному викладанні є цілком повноцінною й перспективною основою введення дробових чисел.
Вимірювання величин як предметне джерело дробу
Чи зберігає вимірювання не тільки історичне, але й актуальне дидактичне значення при введенні дробів? Багато чого промовляє на користь позитивної відповіді на це питання. Так, розглянемо міркування, висловлені ще на початку століття найбільшим німецьким математиком Ф. Клейном, що спеціально зіставляв можливі шляхи введення дробів. Аналізуючи прийняту тоді в школі методику навчання дробам, він підкреслював той момент, що в порівнянні із цілими числами тут насамперед міняється субстрат наочних образів, якими інтерпретуються дробові числа, а саме «від кількості предметів ми переходимо до вимірювання, від предметів, що підлягають рахунку, ми переходимо до предметів, що підлягають вимірюванню».
Далі Ф. Клейн шкільну методику порівнює з «новою» постановкою питання, з «сучасним викладом», у якому на перший план виступає «формальна сторона справи» і загальні властивості дробу як «числової пари». У цій новій постановці, указує Ф. Клейн, ми «залишаємося цілком на ґрунті цілих чисел». Відомими передбачаються тільки цілі числа й дії над ними. Нові числа (дробові) визначаються як числові пари, а операції над ними - суть операції над цілими числами. Ніяких принципово нових «наочних подань» тут не дається, і вони не потрібні. На противагу цьому «шкільний же виклад істотно опирається на нове наочне подання про вимірювані величини, що дають безпосереднє інтуїтивне уявлення про дроби». Потім Ф. Клейн наводить гарний приклад, що пояснює розходження «шкільної» й «нової» постановки питання: «Уявимо собі істоту, що володіє тільки ідеєю про ціле число й зовсім не знає вимірювання. Для такої істоти шкільний виклад здавався б зовсім незрозумілим.
Информация о работе Дроби в курсі математики початкових класів