Автор работы: Пользователь скрыл имя, 12 Ноября 2014 в 15:07, курсовая работа
1. Цель исследования: Теоретически обосновать и разработать проект по развитию математических представлений у детей старшего дошкольного возраста с использованием традиционных и нетрадиционных методов обучения математике.
Задачи исследования:
1. Провести анализ психолого-педагогической литературы по вопросам математического развития детей.
2. Выделить традиционные и нетрадиционные формы и методы обучения детей математике.
Введение………………………………………………………………..
3
Глава I
Теоретические основы проблемы математического развития детей на современном этапе……………………………………………………..
5
1.1.
Анализ психолого-педагогической литературы по вопросам математического развития детей дошкольного возраста……………..
5
1.2.
Традиционные и нетрадиционные формы и методы обучения детей математике…………………………………………………………………..
10
1.3.
Педагогические условия математического развития детей старшего дошкольного возраста……………………………………………………..
15
Выводы по I главе………………………………………………………….
21
Глава II
Проект работы по математическому развитию детей старшего дошкольного возраста……………………………………………………..
22
2.1.
Изучение опыта работы воспитателей ДОУ по математическому развитию детей старшего дошкольного возраста………………………..
22
2.2.
Использование традиционных и нетрадиционных форм обучения в процессе математического развития детей старшего дошкольного возраста……………………………………………………………………..
26
Выводы по II главе…………………………………………………………
31
Заключение………………………………………………………………….
32
Список литературы………………………………………………………..
33
СОДЕРЖАНИЕ
Введение………………………………………………………… |
3 | |
Глава I |
Теоретические основы проблемы математического развития детей на современном этапе…………………………………………………….. |
5 |
1.1. |
Анализ психолого-педагогической литературы по вопросам математического развития детей дошкольного возраста…………….. |
5 |
1.2. |
Традиционные и нетрадиционные
формы и методы обучения детей математике…………………………………………………… |
10 |
1.3. |
Педагогические условия математического развития детей старшего дошкольного возраста…………………………………………………….. |
15 |
Выводы по I главе…………………………………………………………. |
21 | |
Глава II |
Проект работы по математическому развитию детей старшего дошкольного возраста…………………………………………………….. |
22 |
2.1. |
Изучение опыта работы воспитателей ДОУ по математическому развитию детей старшего дошкольного возраста……………………….. |
22 |
2.2. |
Использование традиционных
и нетрадиционных форм обучения в процессе
математического развития детей старшего
дошкольного возраста………………………………………………………… |
26 |
Выводы по II главе………………………………………………………… |
31 | |
Заключение…………………………………………………… |
32 | |
Список литературы…………………………………………………… |
33 | |
Приложение…………………………………………………… |
36 |
ВВЕДЕНИЕ
В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных программ, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста.
Ребенок старшего дошкольного возраста отличается активностью в познании окружающего, проявляет интерес к математике. У него начинают складываться представления о свойствах предметов: величине, форме, цвете, составе, количестве; о действиях, которые можно производить с ними, - уменьшить, увеличить, разделить, пересчитать, измерить.
Накопленный чувственный и интеллектуальный опыт ребенка может быть объемным, но неупорядоченным, неорганизованным. Направить его в нужное русло, сформировать частные и обобщенные способы познания и необходимо в процессе обучения и познавательного общения. Все это служит фундаментом дальнейшего математического образования детей. Исходя из этого проблема развития математических представлений у детей старшего дошкольного возраста была и остается достаточно актуальной.
Над данной проблемой работают следующие ученые педагоги и психологи: П.Я. Гальперин, Т.И. Ерофеева, Н.Н. Короткова, В.П. Новикова, Л.Н Павлова, М.Ю. Стожарова и многие другие.
Тема курсовой работы: «Развитие математических представлений у детей старшего дошкольного возраста»,
Объект исследования: воспитательно-образовательный процесс.
Предмет исследования: процесс развития математических представлений у детей старшего дошкольного возраста.
1. Цель исследования: Теоретически обосновать и разработать проект по развитию математических представлений у детей старшего дошкольного возраста с использованием традиционных и нетрадиционных методов обучения математике.
Задачи исследования:
1. Провести анализ психолого-педагогической литературы по вопросам математического развития детей.
2. Выделить традиционные и нетрадиционные формы и методы обучения детей математике.
3. Разработать серию занятий по развитию математических представлений у детей старшего дошкольного возраста с использованием традиционных и нетрадиционных методов обучения математике.
Этапы исследования:
На I этапе исследования проводилась подборка и систематизация теоретического материала по теме исследования;
На II этапе изучался опыт педагогов в области математического развития дошкольников;
На III этапе составлялся комплекс занятий по развитию математических представлений у детей старшего дошкольного возраста.
База исследования: МБДОУ «Детский сад комбинированного вида № 22», города Ачинск.
Структура курсовой работы: курсовая работа состоит из введения, 2-х глав, заключения, списка литературы и приложений.
ГЛАВА 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ НА СОВРЕМЕННОМ ЭТАПЕ
1.1 Анализ психолого-педагогической литературы по вопросам математического развития детей старшего дошкольного возраста
Сложившаяся система обучения в дошкольном возрасте, ее содержание и методы ориентировали в основном на развитие у детей предметных способов действий, узких навыков, связанных со счетом и простейшими вычислениями, что недостаточно обеспечивает подготовку к усвоению математических понятий в дальнейшем обучении.
Необходимость пересмотра методов и содержания обучения обоснована в работах психологов и математиков, которые положили начало новым научным направлениям в разработке проблем математического развития дошкольников. Специалисты выясняли возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отметили необходимость повышения теоретического уровня осваиваемых детьми зданий.
В качестве основания для формирования начальных математических представлений и понятий П. Я. Гальперин разработал линию формирования начальных математических понятий и действий, построенную на введении мерки и определении единицы через отношение к ней.
В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через, освоение детьми действий уравнивания и комплектования, измерения. Генезис понятия числа рассматривается на основе краткого отношения любой величины к ее части (Г. А. Корнеева).
В отличие от традиционных методов ознакомления с числом (число - результат счета), новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мера).
Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости научить детей обобщенным способам решения учебных задач, усвоению связей, зависимостей, отношений и логических операций (классификации и сериации). Для этого, предлагаются своеобразные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.
Математики-методисты настаивают на значительном пересмотре содержания знаний для детей старшего дошкольного возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д. (А. И. Маркушевич).
Методику первоначального обучения А. И. Маркушевич рекомендовал строить, основываясь на положениях теории множеств. Необходимо обучать дошкольников простейшим; операциями с множествами (объединение, пересечение, дополнение), формировать у них количественные и пространственные представления.
В настоящее время реализуется идея простейшей логической подготовки дошкольников (А. А. Столяр), разрабатывается методика введения детей в мир логико-математических представлений: свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) - с помощью специальной серии обучающих игр.
В последние десятилетия осуществляется педагогический эксперимент, направленный на выявление более эффективных методов математического развития детей дошкольного возраста, определение содержания обучения, выяснения возможностей формирования у детей представлений о величине, установлении взаимосвязей между счетом, и измерением (Р. Л. Берзина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Л. А. Левинова, Т.В. Тарунтаева, Е. И. Щербакова).
Возможности формирования количественных представлений у детей раннего возраста, пути совершенствования количественных представлений у детей дошкольного возраста изучены В. В. Даниловой, Л. И. Ермолаевой, Е. А. Тархановой.
В настоящее время исследуются возможности использования наглядного моделирования в процессе обучения решению арифметических задач (Н.И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л. Н Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моделированию при ознакомлении с пространственными отношениями (Р.И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).
В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных технологий, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста.
В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников, определения целей и оптимальных границ образовательного содержания дошкольных программ.
Понятие «математическое развитие» дошкольников трактуется в основном как формирование и накопление математических знаний и умений. Следует отметить, что основа такой трактовки понятия «математическое развитие» дошкольников была заложена еще в работах Л.А. Венгера и др.
Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. Например, в исследованиях В.В. Абашиной понятию математического развития ребенка дошкольного возраста посвящена целая глава. В этой работе дается определение понятию «математическое развитие»: «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий». [2, с.56]
Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей. [2, с.56]
В настоящее время прослеживаются два подхода к определению содержания обучения. Ряд авторов (Г.А. Корнеева, Э.Ф. Николаева, Е.В. Родина) эффективность математического развития детей связывают с расширением информационной насыщенности занятий. Другие же (П.Я. Гальперин, А.Н. Федорова) стоят на позиции обогащения содержания, направленного на развитие интеллектуальных способностей и формирование содержательных, научных представлений и понятий. [12, с.68]
Познание и отображение в представлениях общих связей и отношений дошкольники осуществляют посредством наглядно-действенного и наглядно-образного мышления (А. В. Запорожец, Л.А. Венгер, Н. Н. Поддьяков, С. Л. Новоселова и др.). Мы разделяем точку зрения, согласно которой все виды мышления развиваются одновременно и имеют непреходящее значение на протяжении всей человеческой жизни. Внешние, пробующие действия - исходная форма для развития действий образного и логического типа (Н.Н. Поддьяков). [20, с.56]
Организованный процесс наглядно-образного мышления - ознакомление с численными характеристиками пространства и времени - может быть основой развития предпосылок логического мышления. Решение мыслительных задач на установление пространственных и временных связей, причинных зависимостей, количественных отношений будет способствовать интеллектуальному развитию.
Математика должна занимать особое место в интеллектуальном развитии детей, должный уровень которого определяется качественными особенностями усвоения детьми таких исходных математических представлений и понятий, как счет, число, измерение, величина, геометрические фигуры, пространственные отношения. Отсюда очевидно, что содержание обучения должно быть направлено на формирование у детей этих основных математических представлений и понятий и вооружение их приемами математического мышления - сравнением, анализом, рассуждением, обобщением, умозаключением. [ 18,с.47]
В практике работы дошкольных учреждений накоплен достаточный опыт использования игр и игровых упражнений при обучении детей математике. В последние годы проведены исследования игр с математическим содержанием: сюжетно-дидактические игры математического содержания (А. А. Смоленцева); обучающие игры с элементами информатики и моделирования (А. А. Столяр); игры, направленные на интеллектуальное развитие детей (А. А. Зак, 3.А. Михайлова); строительно-конструктивные игры. Кроме этого, активно используются сюжетно-дидактические игры математического содержания, отражающие бытовые явления («Магазин», «Детский сад», «Путешествие», «Поликлиника» и др.), общественные события и традиции («Встреча гостей», «Праздник пришел» и др.). [27, с.124 ]
Информация о работе Проект работы по математическому развитию детей старшего дошкольного возраста