Автор работы: Пользователь скрыл имя, 31 Октября 2013 в 02:29, реферат
Специфичность предмета математики (науки о формах и отношениях) ставит ее как и философию, в особую позицию к естествознанию, а в последние десятилетия - и к обществознанию. Речь идет о том, что их сближает внимание к общим аспектам познавательного процесса, поскольку они раскрывают: математика - лежащие в фундаменте всего естествознания методы и алгоритмы количественной обработки информации, философия - общую стратегию научного поиска.
Но математика являет собой не только язык науки (как считают, наиболее подходящий язык), не только способ переработки ее материала в формы, открывающие новые пути исследования. Она также источник представлений и концепций. Эта способность поставлять методы анализа еще более сближает математику с философией.
МИНОБРНАУКИ РОССИИ
Государственное образовательное учреждение высшего профессионального образования
«РОССИЙСКИЙ
ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ»
Филиал РГГУ в г. Санкт-Петербурге
Юркова Алёна
Математика и философия в древней греции
РЕФЕРАТ по математике
студента 1 курса группы КУ-1
Научный руководитель _____________________ | |
(ученая степень, ученое звание) _____________________ | |
( ФИО преподавателя) | |
Дата регистрации: |
|
____________________ |
Санкт-Петербург 2011
Содержание.
Введение.
Вопрос о взаимосвязи математики и философии впервые был задан довольно давно. Многие великие умы человечества занимались этим вопросом и достигали выдающихся результатов. Это не удивительно: ведь основу взаимодействия философии с какой-либо из наук составляет потребность использования аппарата философии для проведения исследований в данной области; математика же, несомненно, более всего среди точных наук поддается философскому анализу. Наряду с этим прогрессирующая математизация науки оказывает активное воздействие на философское мышление.
Благодаря отвлеченности математического объекта от любых природных, вещественных свойств, образуются абстракции высоких порядков, несущие глубокие обобщения о реальности. Так как математика, по признанию многих ее творцов, есть искусство давать одно и то же имя разным вещам. И чем дальше отстоят вещи, тем эффективнее математическое обобщение. Так оно достигает предельных значений, оказываясь объектом столь же математической, столько философской компетенции: количественные и пространственные структуры, бесконечность, вероятность.
Специфичность предмета математики (науки о формах и отношениях) ставит ее как и философию, в особую позицию к естествознанию, а в последние десятилетия - и к обществознанию. Речь идет о том, что их сближает внимание к общим аспектам познавательного процесса, поскольку они раскрывают: математика - лежащие в фундаменте всего естествознания методы и алгоритмы количественной обработки информации, философия - общую стратегию научного поиска.
Но математика являет собой не только язык науки (как считают, наиболее подходящий язык), не только способ переработки ее материала в формы, открывающие новые пути исследования. Она также источник представлений и концепций. Эта способность поставлять методы анализа еще более сближает математику с философией.
Наконец, философы испытывают притяжение к математике и в связи с “нестандартностью" ее содержания и методов.
В современных условиях необходимость сотрудничества ощущается еще острее. Реализуя внутренние потенции, математика ныне поднялась к абстракциям, особенно отрешенным от действительности. Она всегда отличалась умением находить аналогии, сближая далекие явления и процессы.
1. Истоки взаимного влияния философии и математики.
Совместный путь математики и философии начался в Древней Греции около VI века до н.э..
Не стесненное рамками деспотизма, греческое общество той поры было подобно питательному раствору, на котором выросло многое, что дошло до нас в сильно измененном временем виде, однако сохранив основную, заложенную греками идею: театр, поэзия, драматургия, математика, философия.
Известно, что греческая цивилизация на начальном этапе своего развития отталкивалось от цивилизации древнего Востока. Из дошедших до нас математических документов можно заключить, что в Древнем Египте были сильно отрасли математики, связанные с решением экономических задач. Папирус Райнда (ок. 2000 г. до н.э.) начинался с обещания научить "совершенному и основательному исследованию всех вещей, пониманию их сущностей, познанию всех тайн". Фактически излагается искусство вычисления с целыми числами и дробями, в которое посвящались государственные чиновники для того, чтобы уметь решать широкий круг практических задач, таких, как распределение заработной платы между известным числом рабочих, вычисление количества зерна для приготовления такого-то количества хлеба, вычисление поверхностей и объемов и т.д. Дальше уравнений первой степени и простейших квадратных уравнений египтяне, по-видимому, не пошли. Все содержание известной нам египетской математики убедительно свидетельствует, что математические знания египтян предназначались для удовлетворения конкретных потребностей материального производства и не могли сколько-нибудь серьезно быть связанными с философией.
Математика Вавилона,
как и египетская, была вызвана
к жизни потребностями
Если же сравнивать математические науки Египта и Вавилона по способу мышления, то нетрудно будет установить их общность по таким характеристикам, как авторитарность, некритичность, следование за традицией, крайне медленная эволюция знаний. Эти же черты обнаруживаются и в философии, мифологии, религии Востока.
2. Математика и философия в Древней Греции.
Анализ древнегреческой математики и философии следует начать с милетской математической школы, заложившей основы математики как доказательной науки.
Милетская школа Милетская школа - одна из первых древнегреческих математических школ, оказавшая существенное влияние на развитие философских представлений того времени. Она существовала в Ионии в конце V - IV вв. до н.э. ; основными деятелями ее являлись Фалес (ок. 624-547 гг. до н.э.) , Анаксимандр (ок. 610-546 гг. до н.э.) и Анаксимен (ок. 585-525 гг. до н.э.) . Рассмотрим на примере милетской школы основные отличия греческой науки от догреческой и проанализируем их.
Если сопоставить исходные
математические знания греков с достижениями
египтян и вавилонян, то вряд ли можно
сомневаться в том, что такие
элементарные положения, как равенство
углов у основания
Ее своеобразие заключается, прежде всего, в попытке систематически использовать идею доказательства. Фалес стремится доказать то, что эмпирически было получено и без должного обоснования использовалось в египетской и вавилонской математике. Возможно, в период наиболее интенсивного развития духовной жизни Вавилона и Египта, в период формирования основ их знаний изложение тех или иных математических положений сопровождалось обоснованием в той или иной форме. Однако, как пишет Ван дер Варден, "во времена Фалеса египетская и вавилонская математика давно уже были мертвыми знаниями. Можно было показать Фалесу, как надо вычислять, но уже неизвестен был ход рассуждений, лежащих в основе этих правил".
Греки вводят процесс обоснования как необходимый компонент математической действительности, доказательность действительно является отличительной чертой их математики. Техникой доказательства ранней греческой математики как в геометрии, так и в арифметике первоначально являлась простая попытка придания наглядности. Конкретными разновидностями такого доказательства в арифметике было доказательство при помощи камешков, в геометрии - путем наложения. Но сам факт наличия доказательства говорит о том, что математические знания воспринимаются не догматически, а в процессе размышления. Это, в свою очередь, обнаруживает критический склад ума, уверенность (может быть, не всегда осознанную) , что размышлением можно установить правильность или ложность рассматриваемого положения, уверенность в силе человеческого разума.
Греки в течение одного-двух столетия сумели овладеть математическим наследием предшественников, накопленного в течении тысячелетий, что свидетельствует об интенсивности, динамизме их математического познания. Качественное отличие исследований Фалеса и его последователей от догреческой математики проявляется не столько в конкретном содержании исследованной зависимости, сколько в новом способе математического мышления. Исходный материал греки взяли у предшественников, но способ усвоения и использования этого материала был новый. Отличительными особенностями их математического познания являются рационализм, критицизм, динамизм.
Эти же черты характерны
и для философских исследований
милетской школы. Философская концепция
и совокупность математических положений
формируется посредством
Ряд исследователей объявляет отмеченные выше характеристики мыслительного процесса "врожденными особенностями греческого духа". Однако эта ссылка ничего не объясняет, так как непонятно, почему тот же "греческий дух" по прошествии эпохи эллинизма теряет свои качества. Можно попробовать поискать причины такого миропонимания в социально-экономической сфере.
Иония, где проходила
деятельность милетской школы, была
достаточно развитой в экономическом
отношении областью. Поэтому именно
она прежде прочих вступила на путь
низвержения первобытно-
Напряженность в политической и экономической сферах приводит к столкновениям в области религии, поскольку демос, еще не сомневаясь в том, что религиозные и светские установления вечны, так как даны богами, требует, чтобы они были записаны и стали общедоступными, ибо правители искажают божественную волю и толкуют ее по-своему. Однако нетрудно понять, что систематическое изложение религиозных и мифологических представлений (попытка такого изложения была дана Гесиодом) не могло не нанести серьезного удара религии. При проверке религиозных измышлений логикой первые, несомненно, показались бы конгломератом нелепостей.
Нельзя с большой уверенностью утверждать, что именно воздействие мировоззрения явилось решающим фактором для возникновения доказательства; не исключено ведь, что это произошло в силу других причин: потребностей производства, запросов элементов естествознания, субъективных побуждений исследователей. Однако можно убедиться, что каждая из этих причин не изменила принципиально своего характера по сравнению с догреческой эпохой и не приводит к превращению математики в доказательную науку. Например, для удовлетворения потребностей техники было вполне достаточно практической науки древнего Востока, в справедливости положений которой можно было убедиться эмпирически. Сам процесс выявления этих положений показал, что они дают достаточную для практических нужд точность.
Можно считать одним
из побудительных мотивов
Появление потребности доказательства в греческой математике получает удовлетворительное объяснение, если учесть взаимодействие мировоззрения на развитие математики. В этом отношении греки существенно отличаются от своих предшественников. В их философских и математических исследованиях проявляются вера в силу человеческого разума, критическое отношение к достижениям предшественников, динамизм мышления. У греков влияние мировоззрения превратилось из сдерживающего фактора математического познания в стимулирующий, в действенную силу прогресса математики.
В том, что обоснование приняло именно форму доказательства, а не остановилось на эмпирической проверке, решающим является появление новой, мировоззренческой функции науки. Фалес и его последователи воспринимают математические достижения предшественников, прежде всего для удовлетворения технических потребностей, но наука для них - нечто большее, чем аппарат для решения производственных задач. Отдельные, наиболее абстрактные элементы математики вплетаются в натурфилософскую систему и здесь выполняют роль антипода мифологическим и религиозным верованиям. Эмпирическая подтверждаемость для элементов философской системы была недостаточной в силу общности их характера и скудности подтверждающих их фактов. Математические знания же к тому времени достигли такого уровня развития, что между отдельными положениями можно было установить логические связи. Такая форма обоснований оказалась объективно приемлемой для математических положений.