Автор работы: Пользователь скрыл имя, 24 Ноября 2012 в 12:26, реферат
Накопление знаний происходит с появлением цивилизаций и письменности; известны достижения древних цивилизаций (египетской, месопотамской и т.д.) в области астрономии, математики, медицины и др. Однако в условиях господства мифологического, дорационального сознания эти успехи не выходили за чисто эмпирические и практические рамки. Так, например, Египет славился своими геометрами; но если взять египетский учебник геометрии, то там можно увидеть лишь набор практических рекомендаций для землемера, изложенных догматически («если хочешь получить то-то, делай так-то и так-то»); понятие же теоремы, аксиомы и особенно доказательства было этой системе абсолютно чуждо.
ВВЕДЕНИЕ
Накопление знаний происходит с появлением цивилизаций и письменности; известны достижения древних цивилизаций (египетской, месопотамской и т.д.) в области астрономии, математики, медицины и др. Однако в условиях господства мифологического, дорационального сознания эти успехи не выходили за чисто эмпирические и практические рамки. Так, например, Египет славился своими геометрами; но если взять египетский учебник геометрии, то там можно увидеть лишь набор практических рекомендаций для землемера, изложенных догматически («если хочешь получить то-то, делай так-то и так-то»); понятие же теоремы, аксиомы и особенно доказательства было этой системе абсолютно чуждо. Действительно, требование «доказательств» показалось бы почти кощунством в условиях, предполагавших авторитарную передачу знания от учителя к ученику.
Можно считать, что истинный фундамент классической науки был заложен в Древней Греции, начиная примерно с VI в. до н.э., когда на смену мифологическому мышлению впервые пришло мышление рациональное. Эмпирия, во многом заимствованная греками у египтян и вавилонян, дополняется научной методологией: устанавливаются правила логических рассуждений, вводится понятие гипотезы и т.д., появляется целый ряд гениальных прозрений, как например теория атомизма . Особенно важную роль в разработке и систематизации как методов, так и самих знаний сыграл Аристотель.
Отличие античной науки от современной состояло в её умозрительном характере: понятие эксперимента было ей чуждо, учёные не стремились соединять науку с практикой (за редкими исключениями, например, Архимеда), а наоборот гордились причастностью к чистому, «бескорыстному» умозрению. Отчасти, это объясняется тем, что греческая философия предполагала, что история циклично повторяется, и развитие науки бессмысленно, так как оно неизбежно закончится кризисом этой науки.
Среди ученых-науковедов наблюдаются две крайние точки зрения в самом понятии науки, находящиеся в радикальном противоречии друг с другом.
Первая точка зрения говорит о том, что наука в собственном смысле слова родилась в Европе лишь в XVI--XVII вв., в период, обычно именуемый великой научной революцией. Ее возникновение связано с деятельностью таких ученых, как Галилей, Кеплер, Декарт, Ньютон. Именно к этому времени следует отнести рождение собственно научного метода, для которого характерно специфическое соотношение между теорией и экспериментом. Тогда же была осознана роль математизации естественных наук -- процесса, продолжающегося до нашего времени и теперь уже захватившего ряд областей знания, которые относятся к человеку и человеческому обществу. Античные мыслители, строго говоря, еще не знали эксперимента и, следовательно, не обладали подлинно научным методом: их умозаключения были в значительной степени продуктом беспочвенных спекуляций, которые не могли быть подвергнуты настоящей проверке. Исключение может быть сделано, пожалуй, лишь для одной математики, которая в силу своей специфики имеет чисто умозрительный характер и потому не нуждается в эксперименте. Что же касается научного естествознания, то его в древности фактически еще не было; существовали лишь слабые зачатки позднейших научных дисциплин, представлявшие собой незрелые обобщения случайных наблюдений и данных практики. Глобальные же концепции древних о происхождении и устройстве мира никак не могут быть признаны наукой: в лучшем случае их следует отнести к тому, что позднее получило наименование натурфилософии (термин, имеющий явно одиозный оттенок в глазах представителей точного естествознания) [1].
Другая точка зрения, прямо противоположная только что изложенной, не накладывает на понятие науки сколько-нибудь жестких ограничений. По мнению ее адептов, наукой в широком смысле слова можно считать любую совокупность знаний, относящуюся к окружающему человека реальному миру. С этой точки зрения зарождение математической науки следует отнести к тому времени, когда человек начал производить первые, пусть даже самые элементарные операции с числами; астрономия появилась одновременно с первыми наблюдениями за движением небесных светил; наличие некоторого количества сведений о животном и растительном мире, характерном для данного географического ареала, уже может служить свидетельством первых шагов зоологии и ботаники. Если это так, то ни греческая и ни любая другая из известных нам исторических цивилизаций не может претендовать на то, чтобы считаться родиной науки, ибо возникновение последней отодвигается куда-то очень далеко, в туманную глубь веков.
Обращаясь к начальному периоду развития науки, мы увидим, что там имели место различные ситуации. Так, вавилонскую астрономию следовало бы отнести к разряду прикладных дисциплин, поскольку она ставила перед собой чисто практические цели. Проводя свои наблюдения, вавилонские звездочеты меньше всего интересовались устройством вселенной, истинным (а не только видимым) движением планет, причинами таких явлений, как солнечные и лунные затмения. Эти вопросы, по-видимому, вообще не вставали перед ними. Их задача состояла в том, чтобы пред вычислять наступление таких явлений, которые, согласно взглядам того времени, оказывали благоприятное или, наоборот, пагубное воздействие на судьбы людей и даже целых царств. Поэтому несмотря на наличие огромного количества наблюдений и на весьма сложные математические методы, с помощью которых эти материалы обрабатывались, вавилонскую астрономию нельзя считать наукой в собственном смысле слова.
Прямо противоположную картину мы обнаруживаем в Греции. Греческие ученые, сильно отстававшие от вавилонян в отношении знания того, что происходит на небе, с самого начала поставили вопрос об устройстве мира в целом. Этот вопрос интересовал греков не ради каких-либо практических целей, а сам по себе; его постановка определялась чистой любознательностью, которая в столь высокой степени была присуща жителям тогдашней Эллады. Попытки решения этого вопроса сводились к созданию моделей космоса, на первых порах имевших спекулятивный характер. Как бы ни были фантастичны эти модели с нашей теперешней точки зрения, их значение состояло в том, что они предвосхитили важнейшую черту всего позднейшего естествознания - моделирование механизма природных явлений.
Нечто аналогичное имело место и в математике. Ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач. Любое решение, дававшее практически приемлемые результаты, считалось хорошим. Наоборот, для греков, подходивших к математике чисто теоретически, имело значение прежде всего строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная математика даже в своих высших достижениях, которые долгое время оставались для греков недоступными, так и не подошла к методу дедукции.
Итак, отличительной чертой греческой науки с момента ее зарождения была ее теоретичность, стремление к знанию ради самого знания, а не ради тех практических применений, которые могли из него проистечь. На первых этапах существования науки эта черта сыграла, бесспорно, прогрессивную роль и оказала большое стимулирующее воздействие на развитие научного мышления.
Выделяют следующие периоды формирования античной науки:
Первый период – период ранней греческой науки, получивший у древних авторов наименование науки "о природе". Эта “наука” была нерасчлененной, спекулятивной дисциплиной, основной проблемой которой была проблема происхождения и устройства мира, рассматривавшегося как единое целое. До конца V в. до н.э. “наука” была неотделима от философии. Высшей точкой развития и, в то же время, завершающей стадией науки “о природе” была всеобъемлющая научно-философская система Аристотеля.
Второй период - эллинистические науки. Это период дифференциации наук. Процесс дисциплинарного дробления “единой науки” начался еще в V в. до н.э., когда одновременно с разработкой метода дедукции произошло обособление математики. Работами Евдокса было положено начало научной астрономии. В трудах Аристотеля и его учеников уже можно усмотреть появление логики, зоологии, эмбриологии, психологии, ботаники, минералогии, географии, музыкальной акустики, не считая гуманитарных дисциплин, таких как этика, поэтика и другие, которые никогда не были частью науки “о природе”. Позже приобретают самостоятельное значение новые дисциплины - геометрическая оптика (в частности, катоптрика, т.е. наука о зеркалах), механика (статика и ее приложения), гидростатика. Расцвет эллинистической науки был одной из форм расцвета эллинистической культуры в целом и обусловлен творческими достижениями таких великих ученых, как Евклид, Архимед, Эратосфен, Аполлоний Пергский, Гиппарх и др. Именно тогда, в III - II вв. до н.э., античная наука по своему духу и своим устремлениям ближе всего подошла к науке Нового времени.
Третий период - период постепенного упадка античной науки. Хотя к этому времени относятся работы Птолемея, Диофена, Галена и др., но все же в первые века нашей эры наблюдается усиление регрессивных тенденций, связанных с ростом иррационализма, появлением оккультных дисциплин, возрождением попыток синкретичного объединения науки и философии. [3]
Существуют четыре основных признака античной науки. Эти признаки также являются признаками ее отличия от ненауки предшествующей истории [4]:
1. Наука, как род
деятельности по приобретению
новых знаний. Для осуществления
такой деятельности необходимы
определенные условия:
2. Самоценность науки, ее теоретичность, стремление к знанию ради самого знания;
3. Рациональный характер
науки, что прежде всего
4. Систематичность (системность) научных знаний, как по предметному полю, так по фазам: от гипотезы до обоснованной теории.
Обратившись к античной науке в период ее наивысших достижений можно найти в ней черту, принципиально отличающую ее от науки Нового времени. Несмотря на блестящие успехи античной науки эпохи Евклида и Архимеда, в ней отсутствовал важнейший ингредиент, без которого мы теперь не можем представить себе таких наук, как физика, химия, отчасти биология. Этот ингредиент - экспериментальный метод в том его виде, в каком он был создан творцами науки Нового времени -- Галилеем, Бойлем, Ньютоном, Гюйгенсом. Античная наука понимала значение опытного познания, о чем свидетельствует Аристотель, а до него еще Демокрит. Античные ученые умели хорошо наблюдать окружающую природу. Они достигли высокого уровня в технике измерений длин и углов, о чем мы можем судить на основании процедур, разрабатывавшихся ими, например, для выяснения размеров земного шара (Эратосфен), для измерения видимого диска Солнца (Архимед) или для определения расстояния от Земли до Луны (Гиппарх, Посидоний, Птолемей). Но эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и которое имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение, - такого эксперимента античность еще не знала. Между тем именно такой эксперимент лежит в основе физики и химии - наук, приобретших ведущую роль в естествознании Нового времени. Этим объясняется, почему широкая область физико-химических явлений осталась в античности во власти чисто качественных спекуляций, так и не дождавшись появления адекватного научного метода.
Одним из признаков настоящей науки является ее самоценность, стремление к знанию ради самого знания. Этот признак, однако, отнюдь не исключает возможности практического использования научных открытий. Великая научная революция XVI--XVII вв. заложила теоретические основы для последующего развития промышленного производства, направления нового на использование сил природы в интересах человека. С другой стороны, потребности техники явились в Новое время мощным стимулом научного прогресса. Подобное взаимодействие науки и практики становится с течением времени все более тесным и эффективным. В наше время наука превратилась в важнейшую производительную силу общества.
В античную эпоху подобного взаимодействия науки практики не было. Античная экономика, основанная на использовании ручного труда рабов, не нуждалась в развитии техники. По этой причине греко-римская наука, за немногими исключениями (к которым относится, в частности, инженерная деятельность Архимеда), не имела выходов в практику. С другой стороны, технические достижения античного мира -- в области архитектуры, судостроения, военной техники -- не находились ни в какой! связи с развитием науки. Отсутствие такого взаимодействия оказалось в конечном счете пагубным для античной науки.
3.1 СПЕЦИФИКА АНТИЧНОЙ НАУКИ НА ПРИМЕРЕ МАТЕМАТИКИ
В эпоху античности уровень развития математики был очень высок. Греки использовали накопленные в Вавилонии и Египте арифметические и геометрические знания, но достоверных данных, позволяющих точно определить их воздействие, а также влияние традиции критомикенской культуры, нет. История математики в Древней Греции, включая эпоху эллинизма, делится на четыре периода:
- Ионийский период (600-450 до н.э.):
В результате самостоятельного развития, а также на основе определённого запаса знаний, заимствованных у вавилонян и египтян, математика превратилась в особую научную дисциплину, основанную на дедуктивном методе. Согласно античному преданию, именно Фалес положил начало этому процессу. Однако истинная заслуга в создании Математики как науки принадлежит, видимо, Анаксагору и Гиппократу Хиосскому. Демокрит, наблюдая за игрой на музыкальных инструментах, установил, что высота тона звучащей струны изменяется в зависимости от её длины. Исходя из этого, он определил, что интервалы музыкальной гаммы могут быть выражены отношениями простейших целых чисел. Основываясь на анатомической структуре пространства, он вывел формулы для определения объёма конуса и пирамиды. Для математической мысли этого периода было характерно наряду с накоплением элементарных сведений по геометрии наличие зачатков теории двойственности, элементов стереометрии, формирование общей теории делимости и учения о величинах и измерениях;