Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 17:53, реферат
Многие реакции в растворе протекают в нужном направлении только при определенной концентрации ионов Н+. Изменение её в ту или иную сторону от соответствующего оптимального значения приводит к появлению новых, часто нежелательных продуктов. В связи с этим, поддержание постоянного значения рН на протяжении всего времени осуществления реакции часто является важным условием ее успешного завершения.
Введение
Понятие о буферных растворах
Буферная ёмкость
Уравнение Гендерсона- Хассельбаха. Вычисление рН и рОН буферных систем
Основные показатели кислотно-основного равновесия крови
Буферные системы крови
Заключение
Список литературы
Многие реакции в растворе протекают в нужном направлении только при определенной концентрации ионов Н+. Изменение её в ту или иную сторону от соответствующего оптимального значения приводит к появлению новых, часто нежелательных продуктов. В связи с этим, поддержание постоянного значения рН на протяжении всего времени осуществления реакции часто является важным условием ее успешного завершения.
Особенно актуально это для биохимических процессов, протекающих в живых организмах. Большинство из них катализируется различными ферментами или гормонами, проявляющими свою биологическую активность только в строго определенном и достаточно узком интервале значений рН.
Важную роль в поддержании постоянного рН играют буферные растворы или буферные системы.
Понятие о буферных растворах
Растворы, способные сохранять постоянной концентрацию ионов Н+ при добавлении к ним небольших количеств сильной кислоты или щелочи, а также при разбавлении, называются буферными растворами или буферными системами.
Свойство данных растворов сохранять неизменным присущее им значение рН при вышеперечисленных обстоятельствах, называется иначе буферным действием.
Кислотно-основная пара буферного раствора представляет собой слабую кислоту и ее соль, образованную сильным основанием (например, уксусная кислота СН3СООН и ацетат натрия CH3COONa) или слабое основание и его соль, образованную сильной кислотой (например, гидроокись аммония NH4OH и хлористый аммоний NH4CI). При разведении раствора или добавлении к нему некоторого количества кислоты или щелочи кислотно-основная пара способна соответственно быть донором либо акцептором водородных ионов, поддерживая т.о. величину водородного показателя рН на относительно постоянном уровне.
Значение рН кислотно-основного буферного раствора зависит от концентраций компонентов буферной смеси, находящихся в химическом равновесии, и мало меняется при концентрировании и разбавлении раствора, введении относительно небольших количеств веществ, взаимодействующих с одним из компонентов буферного раствора. Наиб. распространены водные кислотно-основные буферные растворы. Они содержат слабую кислоту НА и сопряженное с ней основание А -, напр. СН3СООН и СН3СОО-, NH4+ и NH3. В таких системах осуществляется равновесие:
По данным о константе диссоциации кислот
где [НА] и [А-] -равновесные концентрации соответствующей кислоты и основания, рКа= —lgКа. Это значение рН остается практически постоянным, т.к. при добавлении небольших количеств сильных кислот или оснований ионы Н3О+ или ОН- связываются основанием (кислотой) с образованием сопряженной кислоты (основания).
Способность буферных систем противодействовать резкому изменению рН при добавлении к ним сильной кислоты или основания является ограниченной. Буферная смесь поддерживает рН постоянным только при условии, что количество вносимых в раствор сильной кислоты или щелочи не превышает определенной величины. В противном случае наблюдается резкое изменение рН, т.е. буферное действие раствора прекращается.
Это связано с тем, что в результате протекающей реакции изменяется соотношение молярных концентраций компонентов буферной системы: С кислоты/С соли или С основания/С соли.
При этом концентрация компонента, реагирующего с добавленной кислотой или щелочью, уменьшается, а концентрация второго компонента возрастает, т.к. он дополнительно образуется в ходе реакции.
Количественно буферное действие раствора характеризуется с помощью буферной емкости (В). При этом различают буферную емкость по кислоте (Вк.) и буферную емкость по основанию или щелочи (Во.).
Буферной емкостью по кислоте является то количество химического эквивалента сильной кислоты, которое нужно добавить к 1 литру (1 дм3) буферной системы, чтобы уменьшить её рН на единицу.
Буферной емкостью по основанию является то количество химического эквивалента сильного основания (щелочи), которое нужно добавить к 1 литру (1 дм3) буферной системы, чтобы вызвать увеличение ее рН на единицу.
Величина буферной емкости зависит от концентраций компонентов буферной системы и от их соотношения.
Чем более концентрированным является буферный раствор, тем выше его буферная емкость, т.к. в этом случае добавление небольших количеств сильной кислоты или щелочи не вызовет существенного изменения концентраций его компонентов, а значит и их соотношения.
Из буферных растворов с одинаковым суммарным содержанием химического количества их компонентов наибольшей емкостью будут обладать те, которые составлены из равного числа молей слабой кислоты и её соли или слабого основания и его соли (рис. 35). В таких растворах молярные концентрации компонентов будут одинаковые, а значит соотношение Скислоты/Ссоли = 1 и Соснования/ Ссоли.= 1.
Среди всех буферных систем организма наибольшей буферной емкостью обладает бикарбонатная кислотно-основная буферная система крови.
Уравнение Гендерсона- Хассельбаха.
Вычисление рН и рОН буферных систем
Из данного уравнения можно выразить (активную кислотность буферной системы):
Кроме уксусной кислоты, в растворе присутствует ее соль CH3COONa. Она является сильным электролитом и полностью распадается на ионы. В результате этого концентрация анионов СН3СОО– резко возрастает, и согласно принципу Ле-Шателье, равновесие реакции диссоциации уксусной кислоты смещается влево, т.е. в сторону образования ее молекул. Причем диссоциация уксусной кислоты в присутствии собственной соли может быть настолько подавленной, что равновесную концентрацию ее нераспавшихся молекул в растворе можно считать равной концентрации СН3СООН, а равновесную концентрацию ацетат-ионов – исходной концентрации соли. В связи с этим выражение, по которому рассчитывается концентрация ионов Н+, можно записать иначе:
где Скислоты и Ссоли – исходные концентрации компонентов буферной системы.
Прологорифмируем полученное уравнение (с учетом того, что логарифм произведения равен сумме логарифмов сомножителей):
и умножим обе его части на –1:
Как было показано нами ранее
, a
В связи с этим запишем уравнение для расчета концентрации ионов Н+ в окончательном виде:
Данное выражение называется иначе уравнением Гендерсона-Хассельбаха. Его можно использовать для вычисления рН любой кислотной буферной системы. Например, для фосфатного буфера уравнение Гендерсона-Хассельбаха запишется следующим образом:
(в данной системе роль слабой кислоты играет анион Н2РО4–, то .
В водных растворах рН и рОН являются сопряженными величинами. Их сумма всегда равна 14, т.е.:
рН + рОН = 14
Зная концентрацию ионов Н+ или рН, можно вычислить концентрацию гидроксильных ионов или рОН.
Уравнения Гендерсона-Хассельбаха для расчета рОН и рН в оснóвных буферных системах выглядят следующим образом:
где pKb = –lg Kb (основания), Соснования и Ссоли – исходные молярные концентрации компонентов данных буферных систем, т.е. слабого основания и его соли с сильной кислотой.
Основные показатели кислотно-основного равновесия крови
Огромное значение для организма имеет такая гомеостатическая постоянная, как активная реакция крови, которая обеспечивает выполнение окислительно-восстановительных процессов, деятельность ферментов, а также направление и интенсивность всевозможных видов обмена.
Неразрывно с понятием кислотно-основного состояния связаны кислотность и щелочность раствора. Причем будет ли раствор щелочным или кислотным, напрямую зависит от содержащихся в нем свободных ионов водорода.
Что касается крови, то активная реакция характеризуется отрицательным десятичным логарифмом концентрации водородных ионов, или водородным показателем (pH).
Так, разработана шкала pH от 0 до 14, в которой в зависимости от содержания ионов водорода среду делят на кислую при pH от 0 до 7, щелочную – от 7 до 14, а также нейтральную, если pH равняется 7.
Что же обеспечивает постоянство кислотно-основного состояния?!
Этому способствует целый ряд физико-химических (буферные системы) и физиологических (легкие, печень, почки и др.) механизмов компенсации.
Так, буферные системы – это растворы, которые обладают способностью достаточно стойко поддерживать постоянную концентрацию ионов водорода даже при условии разбавления, а также добавления кислот и щелочей.
Различают следующие буферные системы:
• Бикарбонатная буферная система (смесь H2CO3 и HCO3+), которая является самой мощной из систем и составляет 53 % буферной емкости крови.
• Гемоглобин-оксигемоглобин буферная система – 35 %.
• Белковая буферная система – 7 %.
• Фосфатная – 5 %.
Теперь пришло время узнать, какое влияние на поддержание кислотно-основного состояния оказывают внутренние органы человека.
Например, большой вклад в этот жизненно необходимый процесс вносят легкие. А все из-за того, что в сутки легкими выделяется из организма примерно 15 000 моль углекислого газа, что соответствует удалению из крови приблизительно такого же количества ионов водорода. Кроме того, одним из самых важных показателей кислотно-основного состояния и его дыхательной составляющей является напряжение углекислого газа в крови (РаСО2).
Информация о работе Понятие о буферных растворах, буферной ёмкости, рН растворов