Автор работы: Пользователь скрыл имя, 20 Ноября 2012 в 11:17, курсовая работа
Основными путями борьбы с пылевыми выбросами в атмосферу должны оставаться совершенствование технологических процессов с доведением до минимума вредных выбросов и создание безотходных, замкнутых технологических циклов. Однако в тех, пока еще многочисленных, случаях, когда эти задачи не могут быть решены, необходимо применять наиболее эффективные и экономичные средства очистки воздуха и газов от пыли перед выбросом их в атмосферу.
Целью данной работы является рассмотреть методы очистки отходящих газов в химической промышленности, а именно каталитическую очистку газов.
Введение. 3
1. Литературный обзор. 5
1.1. Классификация методов и аппаратов
для обезвреживание газовых выбросов. 5
1.2. Каталитическая очистка газов. Суть метода. 10
1.3. Катализаторы для очистки газов. 13
1.4. Конструкция каталитических реакторов. 18
Выводы. 23
Список использованной литературы. 26
Министерство образования и науки РФ
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Кафедра РЭТЭМ
Методы очистки воздуха. Каталитическая очистка отходящих газов
Курсовая работа по дисциплине
«Основы коррекции и оздоровления экологических ситуаций в трех средах»
2011
Содержание
Введение. 3
1. Литературный обзор. 5
1.1. Классификация методов и аппаратов
для обезвреживание газовых выбросов. 5
1.2. Каталитическая очистка газов. Суть метода. 10
1.3. Катализаторы для очистки газов. 13
1.4. Конструкция каталитических реакторов. 18
Выводы. 23
Список использованной литературы. 26
Введение
Одним из следствий техногенного влияния на окружающую среду в ряде стран в настоящее время является заметное ухудшение состояния атмосферного воздуха. Наиболее крупнотоннажные (млн. т. в год) глобальные загрязнения атмосферы образуют СО2 (2*104), пыль (250), СО (200), SО2 (150), углеводороды (> 50), NОх(50). Номенклатура загрязнений весьма широка и включает, помимо названных, сероводород, сероуглерод, аммиак, галогены и их производные, сажу, оксиды металлов, различные соли и другие соединения.
Все промышленные
выбросы в атмосферу
Под очисткой газового потока понимают отделение от него или превращение в безвредную форму загрязняющих веществ, выбрасываемых в атмосферу вместе с газовым потоком. Воздушными массами загрязнения могут переноситься на большие расстояния и существенно влиять на состояние атмосферы и здоровье человека. В частности, происходящее с интенсивностью 0,4% в год накопление в атмосфере СО2 вследствие поглощения им ИК-излучения солнца может вызывать глобальное повышение температуры ("парниковый" эффект). Трансформация в атмосфере SО2, NOх и других аналогичной природы выбросов может завершаться образованием кислотных туманов и выпадением кислотных дождей (снегов), вызывающих коррозию многих неорганических материалов (объектов), а также угнетение и уничтожение различных объектов флоры и фауны. Находящиеся в атмосферном воздухе аэрозоли (пыли, дымы, туманы) задерживают падающую на поверхность Земли солнечную радиацию, способствуя похолоданию на планете. Оседающая же на поверхности ледников пыль ускоряет их таяние вследствие более интенсивного поглощения солнечной энергии. Атмосферные аэрозоли вследствие их более или менее длительной седиментации обусловливают загрязнение токсичными веществами поверхностных и подземных вод, а также почвы.
Эти обстоятельства
обусловливают жесткие
Основными путями
борьбы с пылевыми выбросами в
атмосферу должны оставаться совершенствование
технологических процессов с
доведением до минимума вредных выбросов
и создание безотходных, замкнутых
технологических циклов. Однако в
тех, пока еще многочисленных, случаях,
когда эти задачи не могут быть
решены, необходимо применять наиболее
эффективные и экономичные
Целью данной работы является рассмотреть методы очистки отходящих газов в химической промышленности, а именно каталитическую очистку газов.
1. Литературный обзор.
1.1. Классификация
методов и аппаратов для
Основными источниками загрязнения атмосферного воздуха являются промышленные предприятия, транспорт, тепловые электростанции, животноводческие комплексы. Загрязнения в атмосферу поступают из источников непрерывно или периодически, залпами или мгновенно. В случае залповых выбросов за короткий промежуток времени в воздух выделяется большое количество вредных веществ. Залповые выбросы возможны при авариях, при сжигании быстрогорящих отходов производства на специальных площадках уничтожения. При мгновенных выбросах загрязнения выбрасываются в доли секунды иногда на значительную высоту. Они происходят при взрывных работах и авариях.
С отходящими газами в атмосферу поступают твердые, жидкие, паро- и газообразные неорганические и органические вещества, поэтому по агрегатному состоянию загрязнения подразделяют на твердые, жидкие, газообразные и смешанные.
Отходящие газы промышленности, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной — твердые частицы или капельки жидкости. Такие системы называют аэрозолями, которые разделяют на пыли, дымы, и туманы. Пыли содержат твердые частицы размером от 5 до 50 мкм, а дымы — от 0,1 до 5 мкм. Туманы состоят из капелек жидкости размером 0,3—5 мкм и образуются в результате конденсации паров или при распылении жидкости в газе.
Организованный промышленный выброс — это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы, а неорганизованным выбросом называют промышленный выброс, поступающий в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования, отсутствия или неудовлетворенной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.
Классификация методов и аппаратов представлена на схеме 1.
Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью (осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости). В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.
Выбор метода и аппарата зависит от их дисперсного состава.
Для обезвреживания отходящих газов от газообразных и парообразных токсичных веществ применяют методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования.
Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам:
1) по абсорбируемому компоненту;
2) по типу применяемого абсорбента;
3) по характеру процесса — с циркуляцией и без циркуляции газа;
4) по использованию
абсорбента — с регенерацией
(возвращением его в цикл (циклические)
и без регенерации (не
5) по использованию
улавливаемых компонентов — с
рекуперацией и без
6) по типу рекуперируемого продукта;
7) по организации процесса — периодические и непрерывные;
8) по конструктивным
типам абсорбционной
Схема 1. Классификация методов и аппаратов для обезвреживание газовых выбросов.
Для физической абсорбции применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органических веществ и водные суспензии различных веществ.
Выбор метода очистки зависит от многих факторов: концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производит на основании результатов технико-экономических расчетов.
Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком — невозможность очистки запыленных газов.
Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции.
В рекуперационной технике наряду с другими методами для улавливания паров летучих растворителей используют методы конденсации и компримирования.
Метод конденсации - уменьшения давления насыщенного пара растворителя при понижении температуры. Смесь паров растворителя с воздухом предварительно охлаждаютт в теплообменнике, а затем конденсируют. Достоинство: простота аппаратурного оформления; эксплуатация рекуперационной установки. Однако проведение процесса очистки паровоздушных смесей методом конденсации сильно осложнено, поскольку содержание паров летучих растворителей в этих смесях обычно превышает нижний предел их взрываемости. Недостатки: высокие расходы холодильного агента, электроэнергии и низкий процент конденсации паров (выход) растворителей (70—90%).
Метод компримирования - то же явление, что и метод конденсации, но применительно к парам растворителей, находящимся под избыточным давлением. Однако метод компримирования более сложен в аппаратурном оформлении, так как в схеме улавливания паров растворителей необходим компримирующий агрегат. Кроме того, он сохраняет все недостатки, присущие методу конденсации, и не обеспечивает возможность улавливания паров летучих растворителей при их низких концентрациях.
Термические методы (методы прямого сжигания) применяют для обезвреживания газов от легкоокисляемых токсичных, а также дурнопахнущих примесей. Методы основаны на сжигании горючих примесей в топках печей или факельных горелках. Преимуществом метода является простота аппаратуры, универсальность использования. Недостатки: дополнительный расход топлива при сжигании низкоконцентрированных газов, а также, необходимость дополнительной абсорбционной или адсорбционной очистки газов после сжигания.
1.2. Каталитическая очистка газов. Суть метода.
Каталитическая очистка газов основана на гетерогенном катализе и служит для превращения примесей либо в безвредные соединения, либо в соединения, легко удаляемые из газовой смеси.
Достоинства метода:
Недостатки:
Особенность
каталитической очистки газов состоит
в том, что очищаются большие
объемы отходящих газов с малым
содержанием примеси. Кроме того,
в газах могут содержаться
не один, а несколько вредных
Суть каталитических
процессов газоочистки
А+В+К → К[АВ], К[АВ] → С+К,
где К[АВ]—активированное промежуточное соединение на поверхности канализатора.
Информация о работе Основы коррекции и оздоровления экологических ситуаций в трех средах