Автор работы: Пользователь скрыл имя, 08 Июля 2015 в 13:21, контрольная работа
В прямоугольной декартовой системе координат строим прямую -x1 + x2 =2 , соответствующую ограничению (1) по двум точкам, например, (2; 0) и (1; 3). Находим, какая из полуплоскостей, на которые эта прямая делит всю координатную плоскость, является областью решений неравенства (1). Для этого достаточно координаты какой-либо точки, не лежащей на прямой, подставить в неравенство. Так как прямая не проходит через начало координат, подставляем координаты точки А(0;0) в первое ограничение 0+0≤2. Получаем строгое неравенство 0 ≤2. Следовательно, точка А лежит в полуплоскости решений.