Автор работы: Пользователь скрыл имя, 26 Ноября 2015 в 19:18, курсовая работа
Метод биоиндикации основан на избирательном биологическом накоплении веществ из окружающей среды организмами растений и животных. Наиболее опасными для биотических сообществ являются антропогенные загрязнения вод тяжелыми металлами, радионуклидами, некоторыми хлорорганическими производными, так как вызывают в живых организмах отклик в виде накопления этих веществ, как всем организмом, так и его отдельными частями.
Введение………………………………………………………………………
3
1. Основные источники загрязнения водной среды………………………..
4
2. Биоиндикация окружающей среды………………………………………
11
3. Оценка качества водной среды, методами биоиндикации……………...
16
3.1 Биологический контроль водоема методами сапробности………...
18
3.2 Биологический анализ активного ила……………………………….
23
3.3 Оценка трофических свойств водоема, с использованием высших растений………………………………………………………………………
29
4. Биотестирование окружающей среды……………………………………
34
4.1 Изменение спонтанной двигательной активности инфузорий под влиянием антропогенных факторов…………………………………………
38
4.2 Биотестирование загрязнения воды с помощью ряски малой…………………………………………………………………………..
40
4.3 Оценка токсичности вод пресного водоема по фильтрационной активности дафний…………………………………………………………...
43
Заключение…………………………………………………………………...
46
Список использованной литературы………………
Степень загрязнённости вод в океане постоянно возрастает. Способность воды к самоочищению оказывается порой недостаточной, чтобы справиться с постоянно увеличивающимся количеством сбрасываемых отходов. Под влиянием течений загрязнения перемешиваются и очень быстро распространяются, оказывая вредное воздействие на зоны, богатые животными и растительностью, наносят серьёзный ущерб состоянию морских экосистем и экономике в целом.
Опасность радиоактивного загрязнения обусловлена свойствами радиоцезия и радиостронция, которые аналогичны или противоположны по своим химическим свойствам калию, натрию, кальцию.
Одним из видов загрязнений водоемов является тепловое. Этот вид загрязнения связан со сбором в водоемы нагретых вод, используемых в промышленности. Например, на площадке Кольской атомной станции, расположенной за Полярным кругом, через 7 лет после начала эксплуатации температура подземных вод повысилась с 6 оС до 19 оС вблизи главного корпуса. По существующим санитарным нормам температура водоема не должна повышаться более чем на 3 оС летом и 5 оС зимой, а тепловая нагрузка на водоем не должна превышать 12 – 17 кДж/м3.
Тепловое загрязнение водоемов влияет на состояние биоты. Увеличение температуры воды приводит к нарушению условий нереста рыб, повышению их зараженности теплолюбивыми видами паразитов и т.д. Интенсивность влияния теплового загрязнения зависит от температуры нагревания воды. Для летнего периода установлена характерная последовательность воздействия повышенных температур воды на биоценоз озер и искусственных водоемов:
1 при температуре до 26 оС не наблюдается вредного воздействия;
2 в пределах температуры 26 – 30 оС наступает состояние угнетения жизнедеятельности рыб;
3 при температуре свыше 30 оС наблюдается вредное воздействие на биоценоз;
4 при температуре 34 – 36 оС создаются летальные условия для рыб [4].
Для оценки качества вод рассчитывается индекс загрязненности воды (ИЗВ). Расчет ИЗВ основан на вычислении среднегодовых концентраций шести ингредиентов: два ингредиента являются обязательными – это растворенный кислород и биологическое потребление кислорода (БПК5). Биологическое потребление кислорода – показатель загрязнения воды, характеризуемый количеством кислорода, которое за установленное время (обычно за пять суток) пошло на окисление химических загрязнителей, содержащихся в единице объема воды. Четыре ингредиента выбираются, исходя из приоритетности превышения ПДК. Часто это азот аммонийный, азот нитратный, цинк, нефтепродукты. Если ИЗВ меньше или равен 0,3, то вода очень чистая; ИЗВ = 0,3 – 1 - чистая вода; ИЗВ = 1 – 2,5 – умеренно загрязненная; ИЗВ = 2,5 – 4 - загрязненная; ИЗВ = 4 – 6 – грязная; ИЗВ= 6 –10 – очень грязная; ИЗВ больше 10 – чрезвычайно грязная.
Последствия загрязнения гидросферы разнообразны, происходят изменения:
1 физических свойств воды (прозрачности и окраски, появление запахов и привкусов);
2 химических свойств (накопление загрязняющих веществ; образование плавающих загрязнений на поверхности водоемов, взвешенных в толще водоемов и отложения на дне);
3 газового состава (уменьшение количества растворенного О2, увеличение количества СО2, СН4). Уменьшение О2 происходит за счет окисления им органических веществ;
4 изменение состояния биоты: эвтрофикация водоемов, накопление химических токсикантов в биоте и мутагенное ее изменение; снижение биологической продуктивности водоемов; появление новых бактерий (в т.ч. болезнетворных); нарушение структуры пищевых цепей.
Загрязнению подвергаются не только поверхностные, но и подземные воды. В целом состояние подземных вод оценивается как критическое и имеет опасную тенденцию дальнейшего ухудшения.
Подземные воды (особенно верхних, неглубоко залегающих, водоносных горизонтов) вслед за другими элементами окружающей среды испытывают загрязняющее влияние хозяйственной деятельности человека. Подземные воды страдают от загрязнений нефтяных промыслов, предприятий горнодобывающей промышленности, полей фильтрации, шламонакопителей и отвалов металлургических заводов, хранилищ химических отходов и удобрений, свалок, животноводческих комплексов, не канализированных населенных пунктов. Происходит ухудшение качества воды в результате подтягивания некондиционных природных вод при нарушении режима эксплуатации водозаборов. Площади очагов загрязнения подземных вод достигают сотен квадратных километров.
Из загрязняющих подземные воды веществ преобладают: нефтепродукты, фенолы, тяжелые металлы (медь, цинк, свинец, кадмий, никель, ртуть), сульфаты, хлориды, соединения азота.
Перечень веществ контролируемых в подземных водах не регламентирован, поэтому нельзя составить точную картину о загрязнении подземных вод.
По оценкам Всемирной организации здравоохранения, 80 % всех болезней в мире связано с неудовлетворительным качеством воды. Заболевания, вызванные загрязненной водой, можно объединить в пять групп.
Первую группу объединяют заболевания, возникающие при использовании зараженной воды для мытья посуды, продуктов, умывания. Это тиф, холера, дизентерия, гастроэнтерит и инфекционный гепатит.
Вторую группу объединяют заболевания кожи и слизистых оболочек, возникающие главным образом при умывании. Это чесотка, конъюктивит, язвы.
Третья группа представлена заболеваниями, которые вызываются моллюсками, живущими в воде. Они являются переносчиками такой инфекции как шистосоматоз. Шистосоматоз вызывает лихорадку, боли в печени, сыпь на коже, появление крови в фекалиях.
Четвертая группа – это заболевания, вызываемые живущими или размножающимися в воде насекомыми. Они являются переносчиками малярии, желтой лихорадки, сонной болезни.
Пятая группа – это заболевания, возникающие из-за несовершенной канализации. Наиболее распространенное из них – нематодоз.
Хозяйственно – питьевая вода должна быть безвредна для здоровья человека, иметь хорошие физические, химические и санитарные показатели.
Метод или совокупность методов очистки выбирают на основе изучения свойств исходной воды, её запасов в источнике, требуемое количество продукта, а также воспринимающую способность канализации для приема выделенных из воды загрязнений [1].
2 Биоиндикация окружающей среды
Метод оценки абиотических и биотических факторов местообитания при помощи биологических систем называют биоиндикацией (лат. – indicare – указывать).
В соответствии с этим организмы или сообщества организмов, жизненные функции которых так тесно коррелируют с определенными факторами среды, что могут применяться для их оценки, называются биоиндикаторами.
В настоящее время при оценке состояния окружающей среды ведущая роль отводится физическим и химическим методам экологического контроля. Их сущность сводится к сравнению загрязнения отдельных компонентов природных комплексов с ПДК или ПДУ. Однако существующие системы нормативов не обеспечивают экологическую безопасность экосистем – состояние защищенности природной среды и жизненно важных интересов человека от возможного негативного воздействия хозяйственной и иной деятельности, чрезвычайных ситуаций природного и техногенного характера, их последствий – и чаще носят антропоцентрический характер. Поэтому действующая сегодня в практике природопользования регламентация антропогенного воздействия на природную среду приводит к тому, что экосистема даже в идеальных случаях контроля часто подвергается чрезмерным нагрузкам. Хотя при выявлении загрязненных зон аналитическая концепция может рассматриваться как высокоинформативная, в практике более широкомасштабных исследований - оценки экологического состояния среды - она имеет ряд недостатков. Кроме указанного выше, а также высокой стоимости получения репрезентативных данных к недостаткам относятся:
1 невозможность учета в практической деятельности синергического и антагонистического эффектов поллютантов;
2 неразрешимость проблемы оценки влияния на токсичность или иные лимитирующие свойства поллютантов разнообразных природных факторов;
3 невозможность получения информации о вторичных эффектах действия поллютантов, вызванных их накоплением и трансформацией в различных звеньях экосистем
Изучение последствий антропогенного воздействия на окружающую среду невозможно без применения приемов биологической индикации, которая дает прямую информацию о реакции организмов на стрессорные факторы.
Преимущества живых индикаторов состоят в том, что они:
1 суммируют все биологически важные данные об окружающей среде; отражают её состояние в целом;
2 устраняют трудную задачу применения дорогостоящих и трудоёмких физических и химических методов для измерения биологических параметров;
3 вскрывают скорость происходящих в природной среде изменений; указывают пути и места скопления в экологических системах различного рода загрязнений;
4 позволяют судить о степени вредности тех или иных веществ для живой природы и человека;
5 дают возможность контролировать действие многих, синтезируемых человеком соединений;
6 помогают нормировать допустимую нагрузку на экосистемы.
Теоретические основы биоиндикации экологического состояния среды разработаны достаточно подробно. Известно, что все живые организмы предъявляют к условиям местообитания определенные требования. Они были выработаны в процессе развития вида и определяют его существование в условиях соответствующей экологической ниши. На живой организм всегда действует совокупность экологических факторов. Широко распространено разделение факторов на абиотические, биотические и те, которые связаны с деятельностью человека, то есть антропогенные [6].
Все экологические факторы тесно связаны между собой. Обычно изменение одного из них влечет за собой и изменение других. Поэтому, изучая реакцию организмов на тот или иной фактор, всегда надо иметь в виду их взаимодействие. Каждый экологический фактор или комплекс взаимодействующих факторов по-разному действуют на живые организмы в разные фазы его онтогенеза. Экологические особенности особей меняются с возрастом и в зависимости от жизненного состояния.
Наряду с этим большое значение в биоиндикационных исследованиях имеет учет «эффекта замещения» или «эффекта компенсации», когда избыток или недостаток одного фактора компенсируется другими факторами. При изучении комплексного воздействия факторов внешней среды на живые организмы нужно иметь в виду возможность их антагонизма или синергизма.
Все биологические системы – будь то организмы, популяции или биоценозы - в ходе своего развития приспособились к комплексу факторов местообитания. Они завладели определенной экологической нишей, в которой находят подходящие условия существования и могут нормально питаться и размножаться. Каждый организм обладает генетически закрепленным физиологическим порогом толерантности (выносливости), в пределах которого этот фактор является для него переносимым [8].
Реакция организма, его угнетение или процветание зависит от дозировки фактора, т.е. каждый вид приспособлен к определенной интенсивности каждого экологического фактора и к определенному диапазону его изменчивости.
Биологический процесс может осуществляться не при любых изменениях фактора, а только в пределах двух его значений – максимального и минимального, которые представляют собой границы толерантности данного процесса относительно определенного экологического фактора.
Особи каждого вида могут существовать только в определенном пределе изменчивости отдельных элементов среды. Диапазон колебаний фактора, который может выдерживать вид, называется его экологической валентностью или физиологическим диапазоном толерантности. Формы с широкой экологической валентностью обозначают как эврибионтные (или эврипотентные), с узкой – как стенобионтные (или стенопотентные) (eurys – широкий, stenos – узкий). Примером стенобионтных форм могут служить мадрепоровые кораллы, обитающие только в морях на твердых грунтах при температуре не ниже 2 °С и не выносящие даже легкого опреснения воды. Виды с очень высокой степенью эврибионтности называются убиквистами (ubiqиe – везде).
Степень экологической валентности вида можно оценивать не только в отношении широкого комплекса факторов (эври- или стенобионтность), но и применительно к каждому из них в отдельности, добавляя к названию соответствующего фактора греческое «эври» или «стено» [7].
Таблица1 – Степень экологической валентности вида.
Фактор |
Организм |
Биотоп |
Эвритопный Стенотопный |
Глубина |
Эврибатный Стенобатный |
Соленость |
Эвригалинный Стеногалинный |
Температура |
Эвритермный Стенотермный |
Закон оптимума: каждый фактор имеет лишь определенные пределы положительного влияния на организмы. Результат действия переменного фактора зависит, прежде всего, от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора, или просто оптимумом, для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.