Автор работы: Пользователь скрыл имя, 10 Января 2014 в 14:54, реферат
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Введение 3
1.Предмет генетики 5
2.Наследственность 10
3. Мутации 20
4.Значение мутаций 25
Заключение 27
Библиография 28
Гены, лежащие в одной и той же хромосоме, называют сцепленными. Все гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом. Гены, принадлежащие к одной группе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидаемого отношения 9:3:3:1. В таких случаях получаются самые разнообразные соотношения. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назовем соответствующие признаки): серое тело – черное тело, длинные крылья – зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов от скрещивания между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаточными крыльями должно составить 9:3:3:1. Это указывало бы на обычное менделевское наследование при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вместо этого в F2 были получены в основном родительские фенотипы в отношении примерно 3:1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.
Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что полное сцепление встречается редко. В большинстве экспериментов по скрещиванию при наличии сцепления помимо мух с родительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые фенотипы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.. Особенно четким примером метода установления зависимости между фенотипическими признаками организмов и строением их хромосом служит определение пола. У дрозофилы фенотипические различия между двумя полами явно связаны с различиями в хромосомах.
При изучении хромосом у самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Это валовые хромосомы (гетеросомы). Все остальные хромосомы называют аутосомами. У дрозофилы четыре пары хромосом. Три пары идентичны у обоих полов, но одна пара, состоящая из идентичных хромосом у самки, различается у самца. Эти хромосомы называют X- и Y- хромосомами; генотип самки XX, а генотип самца – XY. Такие различия по половым хромосомам характерны для большинства животных, в том числе и для человека, но у птиц (включая кур) и у бабочек наблюдается обратная картина: у самок имеются хромосомы XY, а у самцов -XX. У некоторых насекомых, например у прямокрылых, Y хромосомы нет вовсе, так что самец имеет генотип X0. На рис. 5 изображены половые хромосомы человека.
Рис2 Вид половых хромосом человека в метафазе митоза.
При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. Например, у млекопитающих каждая яйцеклетка содержит одну X- хромосомы, половина спермиев – одну Y- хромосому, а другая половина – одну X- хромосому. Пол потомка зависит от того, какой из спермиев оплодотворит яйцеклетку. У большинства организмов, однако, Y- хромосома не содержит генов, имеющих отношение к полу. Ее даже называют генетически инертной или генетически пустой, так как в ней очень мало генов. Как полагают, у дрозофилы гены, определяющие мужские признаки, находятся в аутосомах, и их фенотипические эффекты маскируются наличием пары X- хромосом; в присутствии одной X- хромосомы мужские признаки проявляются. Это пример наследования, ограниченного полом (в отличие от наследования, сцепленного с полом), при котором, например, у женщин подавляются гены, детерминирующие рост бороды.
Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца и белоглазой самкой в F1 получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красноглазые самцы и самки. При скрещивании этих мух между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота проявления рецессивного признака выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в X- хромосоме, а Y- хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самкой из F1. В потомстве были получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только X- хромосома несет ген окраски глаз. В Y –хромосоме соответствующего локуса вообще нет. Это явление известно под названием наследования, сцепленного с полом
Известны случаи, когда два или более аллелей не проявляют в полной мере доминантность или рецессивность, так что в гетерозиготном состоянии ни один из аллелей не доминирует над другим. Это явление неполного доминирования, или кодоминантность, представляет собой исключение из описанного Менделем правила наследования при моногибридных скрещиваниях. К счастью, Мендель выбрал для своих экспериментов признаки, которым не свойственно неполное доминирование; в противном же случае оно могло бы сильно осложнить его первые исследования.
Неполное доминирование наблюдается как у растений, так и у животных. В большинстве случаев гетерозиготы обладают фенотипом, промежуточным между фенотипами доминантной и рецессивной гомозигот.
Изменчивостью называют всю
совокупность различий по тому или
иному признаку между организмами,
принадлежащими к одной и той
же природной популяции или виду.
Поразительное морфологическое
разнообразие особей в пределах любого
вида привлекло внимание Дарвина
и Уоллеса во время их путешествий.
Закономерный, предсказуемый характер
передачи таких различий по наследству
послужил основой для исследований
Менделя. Дарвин установил, что определенные
признаки могут развиваться в
результате отбора, тогда как Мендель
объяснил механизм, обеспечивающий передачу
из поколения в поколение
Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.
Изучение фенотипических
различий в любой большой популяции
показывает, что существует две формы
изменчивости – дискретная и непрерывная.
Для изучения изменчивости какого-либо
признака, например, роста у человека,
необходимо измерить этот признак у
большого числа индивидуумов в изучаемой
популяции. В ряде экспериментов
на карликовой фасоли он выбирал из
каждого поколения
Реципкорный обмен между хроматидами гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.
Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта операция носит случайный характер. Во время метафазы II пары хроматид опять-таки ориентируются случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазыII. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать.
Третий источник изменчивости
при половом размножении –
это то, что слияние мужских
и женских гамет, приводящее к
объединению двух гаплоидных наборов
хромосом в диплоидном ядре зиготы,
происходит совершенно случайным образом
(во всяком случае, в теории); любая
мужская гамета потенциально способна
слиться с любой женской
Эти три источника генетической изменчивости и обеспечивают постоянную "перетасовку" генов, лежащую в основе все время происходящих генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
3. Мутации
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации, возникшие в соматических клетках, наследуются только дочерними клетками, образовавшимися путем митоза и такие мутации называют соматическими.
Мутации, возникающие в
результате изменения числа или
макроструктуры хромосом, известны под
названием хромосомных мутаций
или хромосомных аберраций (перестроек).
Иногда хромосомы так сильно изменяются,
что это можно увидеть под
микроскопом. Но термин "мутация"
используют главным образом для
обозначения изменения
Представление о мутации как о причине внезапного появления нового признака было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т.Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация – результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре иРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.
Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делеции, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто – и к образованию измененного полипептида. Например, делеция вызывает сдвиг рамки.
Генные мутации, возникающие
в гаметах или в будущих
половых клетках, передаются всем клеткам
потомков и могут влиять на дальнейшую
судьбу популяции. Соматические генные
мутации, происходящие в организме,
наследуются только теми клетками,
которые образуются из мутантной
клетки путем митоза. Они могут
оказать воздействие на тот организм,
в котором они возникли, но со
смертью особи исчезают из генофонда
популяции. Соматические мутации, вероятно,
возникают очень часто и
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия – заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух a- и двух b– цепей), к которым присоединены четыре простетические группы гема. От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав b- цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных a -цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутамидовая кислота замещена валином.В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40 %. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель – малярийный плазмодий – не может жить в эритроцитах, содержащих аномальный гемоглобин Известны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе и на жизнеспособность. Летальные мутации вызывают такие изменения в развитии, которые несовместимы с жизнедеятельностью. Доминантные летальные гены трудны для изучения, и сведения о них ограничены. Напротив, гены с рецессивным летальным действием изучены гораздо лучше. Известно множество рецессивных мутаций у различных организмов, которые никак себя не проявляют фенотипически. Существует также очень много доминантных мутаций, имеющих в гетерозиготном состоянии четко отличающийся фенотип, которые в гомозиготном состоянии вызывают летальный эффект. Фаза летального действия, т.е. время, когда мутантный ген реализуется, существенно варьирует: от самых первых этапов эмбрионального развития до периода полового созревания. В некоторых случаях летальные гены могут иметь более одной фазы летального действия. Это означает, что ген или его продукты могут иметь несколько раз активно работать и использоваться в ходе онтогенеза. Летальный эффект одних мутантных генов проявляется всегда, другие показывают существенную зависимость от условий среды. У человека и у других млекопитающих определенный рецессивный ген вызывает образование внутренних спаек легких, что приводит к смерти при рождении. Другим примером служит ген, который влияет на формирование хряща и вызывает врожденные уродства, ведущие к смерти новорожденного.
Информация о работе Причуды генетики, наследственность, мутации