Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 12 Января 2014 в 15:16, шпаргалка

Краткое описание

Работа содержит ответы на вопросы по дисциплине "Биология".

Вложенные файлы: 1 файл

Vvedenie_v_bio_ekzamen_vsya_khuynya.docx

— 687.18 Кб (Скачать файл)

 

 

Вопрос 20

Дарвин опубликовал «Происхождение видов» почти за 100 лет до расшифровки  структуры ДНК. Новые знания, полученные с тех пор, могли бы однозначно опровергнуть эволюционное учение, если бы оно было ложно. Вместо этого анализ ДНК дает нам убедительнейшие  доказательства теории эволюции. Сам  факт наличия наследственной изменчивости необходим для эволюции, и если бы оказалось, что ДНК устойчива  к изменениям, это означало бы конец  теории. Но ДНК постоянно мутирует, порождая генетическое разнообразие, которое служит материалом для отбора. При этом обычно чем больше генетических различий между организмами, тем сильнее различается и их строение (хотя это не строгое правило, поскольку многие генетические мутации не проявляются в фенотипе). Например, отличия генома человека от генома шимпанзе включают 35 миллионов замен отдельных нуклеотидов, 5 миллионов удалений и вставок, слияние двух хромосом и девять хромосомных инверсий. Это очень небольшая степень различия (порядка 1-2%), учитывая, что размер генома человека и шимпанзе - свыше 3 миллиардов пар нуклеотидов. Все типы мутаций, которые привели к возникновению этих различий, наблюдаются и сегодня у разных организмов как в природе, так и в лаборатории; в противном случае версию об эволюционном происхождении от общего предка пришлось бы пересматривать, то есть это еще один пример фальсифицируемости теории эволюции.

Расшифровка молекулярной основы наследственности (ДНК) и генетического кода на самом деле была важнейшим "моментом истины" в истории эволюционного учения. "Вещество наследственности" вполне могло оказаться разным у разных видов (например, у человека - ДНК, а у шимпанзе - какой-нибудь другой биополимер). Генетический код тоже мог оказаться разным. В обоих случаях эволюционное превращение одного вида в другой, как и их происхождение от общего предка, стало бы принципиально невозможным, и эволюционная теория была бы опровергнута. Но и "вещество наследственности" (полинуклеотиды ДНК и РНК), и генетический код оказались одинаковыми у всех без исключения форм жизни - от вирусов и бактерий до человека включительно. Правда, в генетическом коде изредка встречаются вариации (см.: Генетический код допускает разночтения ), но они очень невелики и обычно затрагивают только некоторые второстепенные, "избыточные" кодоны. Эволюционная теория четко объясняет, почему генетический код практически не может изменяться в ходе эволюции. Чисто "технически" радикальное изменение генетического кода осуществить легко и просто: достаточно внести несколько десятков мутаций в гены транспортных РНК - молекул, играющих ключевую роль в "считывании" кода. В результате, например, "триптофановая" тРНК, распознающая кодон УГГ и присоединяющая к синтезируемой молекуле белка аминокислоту триптофан, начнет распознавать другой кодон или кодоны, например АГГ и АГА, которые сейчас кодируют аргинин. Но в результате этой простой мутации произойдет радикальное изменение всех белков, синтезируемых клетками организма: во всех белковых молекулах там, где должен быть аргинин, окажется триптофан. Такое изменение, затронувшее сразу все белки, не может не оказаться чрезвычайно вредным для организма. Соответственно, такая мутация немедленно будет отсеяна отбором. Антиэволюцинизм, напротив, не может предложить никаких внятных объяснений наблюдаемого единства генетического кода у всех организмов. Творец вполне мог бы снабдить разные виды сотворенных им существ разными генетическими кодами - ну хотя бы для того, чтобы не вводить биологов во искушение, предоставляя им еще один чрезвычайно весомый довод в пользу эволюции. К тому же это было бы и полезно для организмов, так как предотвратило бы межвидовую передачу болезнетворных вирусов. Именно таким путем человек "обзавелся" вирусами оспы (от рогатого скота), СПИДа (от обезьян), гриппа и др. Чисто "технически" разные варианты кода совершенно равнозначны и работать смогли бы одинаково хорошо.

Различия между геномами видов  должны соответствовать не только экспериментально наблюдаемым типам мутаций, но и  филогенетическому дереву, и палеонтологической летописи. Подобно тому, как анализ ДНК позволяет установить степень  родства между двумя людьми, тот  же самый анализ ДНК (сравнение отдельных  генов или целых геномов) позволяет  выяснить степень родства между  видами, а зная количество накопленных  различий, исследователи определяют время расхождения двух видов, то есть время, когда жил их последний  общий предок. Например, согласно данным палеонтологии, общий предок человека и шимпанзе жил примерно 6 миллионов  лет назад (такой возраст имеют, например, ископаемые находки оррорина и сахелантропа - форм, морфологически близких к общему предку человека и шимпанзе). Для того, чтобы получилось наблюдаемое число различий между геномами, на каждый миллиард нуклеотидов должно было приходиться в среднем 20 изменений за одно поколение. Сегодня у людей скорость мутаций составляет 10-50 изменений на каждый миллиард нуклеотидов за одно поколение, то есть данные палеонтологии согласуются с результатами анализа ДНК, в строгом соответствии с теорией эволюции.

Для того, чтобы построить филогенетическое дерево, достаточно рассмотреть несколько генов, присутствующих у всех организмов, которые мы хотим включить в это дерево (обычно чем больше генов, тем статистически достовернее получаются элементы дерева - порядок ветвления и длины ветвей).

Особый интерес представляют случаи, когда различия геномов оказываются  нейтральными, то есть не влияют на организм. Например, было рассчитано, что цитохром c может быть составлен как минимум 2.3 * 1093 разными способами за счет того, что одинаковую по функции и биологически значимым свойствам молекулу белка можно получить с помощью разных последовательностей аминокислот. В свою очередь, каждая из этих последовательностей может быть закодирована 1046 различными последовательностями ДНК вследствие избыточности генетического кода (разные тройки нуклеотидов кодируют одну и ту же аминокислоту). Нет никаких априорных причин, кроме происхождения от общего предка, по которым два разных вида должны были бы иметь хотя бы отдаленно похожие последовательности ДНК для кодирования нормально работающего (функционального) цитохрома c. То же самое справедливо и для других белков. Тем не менее аминокислотные последовательности большинства белков у близкородственных видов (например, у шимпанзе и человека), как правило, очень похожи. Так, подавляющее большинство гомологичных белков человека и шимпанзе различаются лишь на 1-2 аминокислоты или не различаются вовсе. Различий в нуклеотидных последовательностях обычно больше за счет незначимых, или синонимичных (не влияющих на аминокислотную последовательность белка) нуклеотидных замен.

По соотношению несинонимичных и синонимичных нулеотидных замен (dN/dS) можно определить, насколько сильно действует на данный ген "очищающий" отбор, отбраковывающий мутации, которые меняют свойства белка. Как правило, чем консервативнее (постояннее) функция белка, тем ниже этот показатель. Повышение dN/dS свидетельствует о положительном отборе, т.е. о закреплении полезных  мутаций. Например, повышенное значение dN/dS у человека по сравнению с другими млекопитающими зафиксировано в гене FOXP2, который связан со способностью к произнесению членораздельных звуков; «Ген речи» оказался регулятором высокого уровня).

Малое число различий в аминокислотных последовательностях белков у близких  видов связано не только с тем, что эти различия еще не успели накопиться, но и с тем, что многие одинаково удачные для выполнения данной функции аминокислотные последовательности (см. выше) отделены друг от друга так называемыми "ямами в ландшафте приспособленности". Это значит, что для того, чтобы перейти от одной такой последовательности к другой, функционально равнозначной, нужно приобрести сразу несколько мутаций, каждая из которых по отдельности может снижать функциональность белка. Многие из этих "ям" можно обойти, последовательно приобретая ряд нейтральных мутаций, но это долгий процесс, основанный на случайностях, а не на позитивном отборе, и поэтому он занимает много времени.

Вопрос 21

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях.

В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами.

Изменчивость, обусловленную  возникновением мутаций, называют мутационной, а обусловленную дальнейшей рекомбинацией генов в результате скрещивания комбинативной.

Роль в эволюции

На наследственной изменчивости основано всё разнообразие индивидуальных различий, которые включают:

  • Как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;
  • Как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);
  • Как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

Все эти типы наследственных изменений составляют материал эволюционного  процесса (см. Микроэволюция). В индивидуальном развитии организма проявление наследственных признаков и свойств всегда определяется не только основными, ответственными за данные признаки и свойства генами, но и их взаимодействием со многими другими генами, составляющими генотип особи, а также условиями внешней среды, в которой протекает развитие организма.

Неоспоримо важна точность при передаче генетической информации в ряду поколений, однако чрезмерная консервация генетической информации, заключенной в отдельных генетических локусах, может быть вредной для  организма и вида в целом.

Эволюционно сложившиеся  отношения между точностью функционирования генетических систем и частотой ошибок, возникающих при воспроизведении  генетической информации отдельных  генетических локусов, четко сбалансированы между собой, и уже установлено, что в ряде случаев являются регулируемыми. Запрограммированные и случайные  наследуемые изменения генома, называемые мутациями, могут сопровождаться колоссальными  количественными и качественными  изменениями в экспрессии генов.

 

Примеры нормы  генетических изменений

  • одним из механизмов, лежащих в основе возникновения разнообразия антител, являются запрограммированные изменения генов иммуноглобулинов, которые закрепляются в геноме лимфоцитов в результате их отбора в онтогенезе.
  • Высокий темп изменений некоторых генетических локусов у паразитических организмов, например, у трипаносом, в результате которых меняется структура антигенных детерминант на поверхности их клеток, необходим для их выживания, так как помогает этим организмам избежать нейтрализующего действия иммунной системы организма-хозяина.
  • абсолютный консерватизм в передаче генетической информации по вертикали сделал бы невозможным филогенетическое развитие организмов, их эволюционные преобразования, приведшие, в конечном счете, к тому разнообразию биологических видов, которое сегодня наблюдается в природе.

Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Цитоплазматические  мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

 

 

 

Вопрос 22

Механизмы эволюционного  процесса по Ч. Дарвину

 

Наблюдения, сделанные  Дарвином

 

Выводы на основе наблюдений

первого порядка

Выводы на основе наблюдений

второго

порядка

Результаты эволюции

1.Во всех популяциях существует  индивидуальная наследственная  изменчивость

 

В борьбе за существование те особи, признаки которых наилучшим образом приспособленны к условиям жизни,

1.Приспособленность организмов  к условиям существования

2.Стремление организмов каждого  вида к размножению в геометрической  прогрессии

Многим особям не удается  выжить и оставить потомство.

В популяциях происходит борьба за существование

 

обладают «репродуктивным преимуществом»

и

 

 

2.Многообразие форм организмов

3.Число особей в каждой  данной популяции примерно постоянно

 

производят больше потомства, чем менее приспособленные особи.

3.Повышение уровня организации  живых организмов, прогрессивный  характер эволюции

4.Ограниченность ресурсов  среды, необходимых для выживания 

 

Информация о работе Шпаргалка по "Биологии"