Золотое сечение в геометрии

Автор работы: Пользователь скрыл имя, 17 Мая 2014 в 23:09, реферат

Краткое описание

Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении) – деление отрезка на две части таким образом, что большая его часть является средней пропорциональной между всем отрезком и меньшей его частью.
Принципы «золотого сечения» используются в математике, физике, биологии, астрономии и др. науках, в архитектуре и др. искусствах. Они лежат в основе архитектурных пропорций многих замечательных произведений мирового зодчества, главным образом античности и Возрождения.

Содержание

• Введение …………………………………………3
• Основная часть
1. История золотого сечения …………………….4
2. Второе золотое сечение ……………………….6
3. «Золотые» фигуры …………………………….7
4. Числа Фибоначчи ……………………………..10
5. Золотое сечение в искусстве …………………12
6. Золотое сечение в математике ………………..13
• Заключение………………………………………14
• Задачи ……………………………………………15
• Список используемой литературы ……………..17

Вложенные файлы: 1 файл

золотое сечение вгеометрии.docx

— 164.97 Кб (Скачать файл)

    Итак, пусть АС=АЕ. Обозначим через a равные углы ЕВС и СЕВ. Так как АС=АЕ, то угол АСЕ также равен a. Теорема о том, что сумма углов треугольника равна 180 градусов, позволяет найти угол ВСЕ: он равен 180-2a, а угол ЕАС - 3a - 180. Но тогда угол АВС равен 180-a. Суммируя углы треугольника АВС получаем,

 

 180=(3a -180) + (3a-180) + (180 - a) 

Откуда 5a=360, значит a=72.

     Итак, каждый из углов при основании треугольника ВЕС вдвое больше угла при вершине, равного 36 градусов. Следовательно, чтобы построить правильный пятиугольник, необходимо лишь провести любую окружность с центром в точке Е, пересекающую ЕС в точке Х и сторону ЕВ в точке Y: отрезок XY служит одной из сторон вписанного в окружность правильного пятиугольника; Обойдя вокруг всей окружности, можно найти и все остальные стороны.

    Докажем теперь, что АС=АЕ. Предположим, что вершина С соединена отрезком прямой с серединой N отрезка ВЕ. Заметим, что поскольку СВ=СЕ, то угол СNЕ прямой. По теореме Пифагора:

     CN2 = а2 – (а/2j) 2= а2 (1-4j 2)

    Отсюда имеем (АС/а) 2 = (1+1/2j) 2 + (1-1/4j 2) = 2+1/j = 1 + j =j 2

    Итак, АС = jа = jАВ = АЕ, что и требовалось доказать.

 

4.Спираль Архимеда

       Последовательно отсекая от золотых прямоугольников квадраты до бесконечности, каждый раз соединяя противоположные точки четвертью окружности, мы получим довольно изящную кривую. Первым внимание на неё обратил древнегреческий ученый Архимед, имя которого она и носит. Он изучал её и вывел уравнение этой спирали.

                                   

 

          В настоящее время спираль Архимеда широко используется в технике.

 

 

 

 

 

 

 

  

 

 

 

 

 

                      Числа Фибоначчи

        С золотым сечением косвенно связано имя итальянского математика Леонардо из Пизы, который известен больше по своему прозвищу Фибоначчи (Fibonacci - сокращенное filius Bonacci, то есть сын Боначчи)

         В 1202г. им была написана книга "Liber abacci", то есть "Книга об абаке" . "Liber abacci" представляет собой объемистый труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший заметную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цифрами.

        Сообщаемый в книге материал поясняется на большом числе задач, составляющих значительную часть этого трактата. 

     Рассмотрим одну такую задачу: 

    "Сколько пар кроликов в один год от одной пары рождается?

      Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, дабы узнать, сколько пар кроликов родится в течение этого года, если природа кроликов такова, что через месяц пара кроликов воспроизведет другую, а рождают кролики со второго месяца после своего рождения"

         Ряд Фибоначчи при u1=1

Месяцы

1

2

3

4

5

6

7

8

9

10

11

12

Пары кроликов

2

3

5

8

13

21

34

55

89

144

233

377


 

     Перейдем теперь от кроликов к числам и рассмотрим следующую числовую последовательность: 

u1, u2 … un

  в которой каждый член равен сумме двух предыдущих, т.е. при всяком n>2

un=un-1+un-2.

        Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

        Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его.

        Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Ф могут стать более понятными, если показать отношения нескольких пеpвых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

1:1 = 1.0000, что меньше фи на 0.6180

2:1 = 2.0000, что больше фи на 0.3820

3:2 = 1.5000, что меньше фи на 0.1180

5:3 = 1.6667, что больше фи на 0.0486

8:5 = 1.6000, что меньше фи на 0.0180

       По мере продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим приближением к недостижимому Ф.

      Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте.

     Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1 : 1.618=0.618). Hо это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение – бесконечная дpобь, у этого соотношения также не должно быть конца.

При делении каждого числа на следующее за ним через одно, получаем число 0.382

1:0.382=2.618

        Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235 ,2.618 ,1.618,0.618,0.382,0.236.Упомянем также 0.5.Все они играют особую роль в природе и в частности в техническом анализе.

       Тут необходимо отметить, что Фибоначчи лишь напомнил свою последовательность человечеству, так как она была известна еще в древнейшие времена под названием Золотое сечение.

       Золотое сечение, как мы видели, возникает в связи с правильным пятиугольником, поэтому и числа Фибоначчи играют роль во всем, что имеет отношение к правильным пятиугольникам - выпуклым и звездчатым.

       Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта (о решении Диофантовых уравнений). Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

      Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений. Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд чисел 1, 2, 4, 8, 16...(то есть ряд чисел до n , где любое натуральное число, меньшее n можно представить суммой некоторых чисел этого ряда) на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущих чисел 2 =1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи?

     

       Золотое сечение в искусстве

1. Золотое сечение  в живописи.

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника..

Также пропорция золотого сечения проявляется в картине Шишкина. На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали.  

В картине Рафаэля "Избиение младенцев" просматривается другой элемент золотой пропорции - золотая спираль. На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Неизвестно, строил ли Рафаэль золотую спираль или чувствовал её.

Т.Кук использовал при анализе картины Сандро Боттичелли «рождение Венеры» золотое сеченеие .

2. Пирамиды золотого  сечения.

Широко известны медицинские свойства пирамид, особенно золотого сечения. По некоторым наиболее распространенным мнениям, комната, в которой находится такая пирамида, кажется больше, а воздух - прозрачнее. Сны начинают запоминаться лучше. Также известно, что золотое сечение широко применялась в архитектуре и скульптуре. Примером тому стали: Пантеон и Парфенон в Греции, здания архитекторов Баженова и Малевича.

     Золотое сечение в математике  
 
В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d.Отрезок прямой АВ можно разделить на две части следующими способами: 
 
* на две равные части – АВ : АС = АВ : ВС; 
* на две неравные части в любом отношении (такие части пропорции не образуют); 
* таким образом, когда АВ : АС = АС : ВС. 
 
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. 
 
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему 
 
a : b = b : c или с : b = b : а. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Заключение

        Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни.

Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса.

Раковина наутилуса закручена подобно золотой спирали.

Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета.

Возбуждение струны в точке , делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации.

На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения.

 

 Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев».

 

 Пропорция обнаружена в картине Сандро Боттичелли «Рождение Венеры»

 

 Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича.

Иоанну Кеплеру, жившему пять веков назад, принадлежит высказывание: "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Задачи

Задача 1 . Дана однородная пластина в форме равнобедренной трапеции с основаниями   и   и высотой h, расположенная симметрично относительно оси OY

Так как ордината центра тяжести c заключена в интервале  , то существует трапеция, для которой     т.е. имеет место золотое сечение.                                      Требуется определить условие, когда центр тяжести трапеции совпадает с золотым сечением.

Решение. Ордината центра тяжести произвольной равнобедренной трапеции находится по следующей формуле: Выражая меньшее основание трапеции через большее, т.е. полагая   (0<γ<1) и подставляя в формулу с учетом получим

         Таким образом, чтобы центр тяжести равнобедренной трапеции делил ее высоту в золотом сечении, необходимо выполнение условия .

Обозначим через p длину отрезка MN, проходящего через центр тяжести параллельно основаниям. Представим площадь S исходной трапеции как сумму  т.е.

Отсюда находим

или

Равенство можно получить также из простых геометрических соображений.

 

 

 

 

 

Задача 2. Тело состоит из трех однородных стержней .

 Длина вертикального стержня равна  , длины прикрепленных к его концам горизонтальных стержней равны  , где Ф дается согласно (4). Плотности всех стержней одинаковы. Вертикальный стержень совпадает с осью симметрии. Требуется найти центр тяжести сложного тела.

Решение. Центр тяжести расположен на оси симметрии. Разбивая сложное тело на 3 части, находим

Видим, что центр тяжести делит вертикальный стержень в золотом сечении.

Задача 3. Дано тело, состоящее из двух однородных стержней .

  Тело из двух однородных стержней

Информация о работе Золотое сечение в геометрии