Автор работы: Пользователь скрыл имя, 15 Января 2013 в 04:46, дипломная работа
Целью дипломного проекта является организация корпоративной компьютерной сети.
Для решения поставленной цели в работе решаются следующие задачи:
• Выбор СКС, топологии, оборудования и программного обеспечения
• Выбор способа управления сетью
• Расчет энергопотребления, монтажа ЛВС, искусственного освещения, притяжной вентиляции;
1. ВВЕДЕНИЕ 5
2. АНАЛИТИЧЕСКИЙ ОБЗОР ЛОКАЛЬНЫХ СЕТЕЙ. 6
2.1. Обзор существующих принципов построения сетей. 6
2.1.1. Классификация ЛВС. 6
2.1.1.1. По расстоянию между узлами. 6
2.1.1.2. По топологии. 6
2.1.1.3. По способу управления. 7
2.1.1.4. По методу доступа. 7
2.2. Структурированные кабельные системы (СКС). 8
2.2.1. Понятие СКС. 8
2.2.2. Хронология развития стандартов СКС. 8
2.2.3. Витая пара. 11
2.2.4. Волоконно-оптический кабель. 13
2.2.5. Беспроводные сети. 16
2.2.6. Горизонтальная кабельная система. 17
2.3. Коммутационное оборудование. 19
2.3.1. Рабочее место. 19
2.3.2. Телекоммуникационный шкаф. 19
2.3.3. Коммутационные блоки. 20
2.3.3.1. Коммутационные блоки типа 66М. 21
2.3.3.2. Коммутационные блоки типа 110. 23
2.3.3.3. Прочие коммутационные системы. 24
2.3.3.4. Коммутационные блоки BIX. 24
2.3.3.5. Коммутационные блоки KRONE. 25
2.3.4. Коммутационные панели (пэтч-панели). 25
2.3.5. Пэтч-корды. 27
2.3.6. Коннекторы. 28
2.3.6.1. Кабельные коннекторы. 28
2.3.6.2. Модульные коннекторы. 28
2.3.7. Терминирование модульных коннекторов. 30
2.4. Типы устройств Fast Ethernet. 30
2.5. Функциональное соответствие видов коммуникационного оборудования уровням модели OSI. 32
3. ПРОЕКТ ЛВС. 35
3.1. Анализ (формирование) требований. 35
3.1.1. Требования к СКС. 35
3.1.2. Требования к активному оборудованию ЛВС. 35
3.1.3. Требования к системе управления ЛВС. 35
3.1.4. Требования к серверам. 36
3.1.5. Требования к сетевой операционной системе. 36
3.1.6. Требования к рабочим станциям. 36
3.1.7. Требования к системе резервного копирования. 37
3.1.8. Требования к комплексу сетевой печати. 38
3.1.9. Требования к программно-аппаратным средствам доступа в Internet. 38
3.1.10. Требования к системе бесперебойного питания основного оборудования ОЛВС. 38
3.2. Выбор оборудования. 38
3.2.1. Выбор структурированной кабельной системы. 38
3.2.1.1. Категории СКС. 38
3.2.1.2. Ретроспектива. 39
3.2.1.3. Предел категории 5. 40
3.2.1.4. Перспектива на срок службы. 41
3.2.1.5. Совместимость. 41
3.2.1.6. Критерии выбора. 43
3.3. Выбор топологии. 44
3.4. Выбор способа управления сетью. 46
3.5. Выбор комплектующих. 46
3.5.1. Активное сетевое оборудование. 46
3.5.2. Телефонная станция. 48
3.5.3. Сервера. 49
3.5.4. Стример. 49
3.5.5. ИБП. 50
3.5.6. Пассивное оборудование. 50
3.5.7. Система охлаждения. 51
3.6. Выбор программного обеспечения. 51
3.6.1. Обзор операционных систем. 51
3.6.2. Nowell NetWare. 51
3.6.3. Семейство ОС Windows 2000. 52
3.6.4. ОС Unix, Linux. 53
3.6.5. Обоснование выбора ОС Windows 2000 Advanced Server. 54
3.7. Построение технической модели. 56
3.8. Расчет полезной пропускной способности сети. 61
3.9. Защита информации. 61
3.10. Тестирование. 65
4. ЗАКЛЮЧЕНИЕ. 67
5. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ. 68
5.1. Технико-экономическое обоснование целесообразности проектирования ЛВС. 68
5.2. Организационная часть. 69
5.2.1. Состав конструкторской группы и должностные оклады. 69
5.2.2. Перечень основных этапов КР локальной вычислительной сети. 70
5.2.3. Смета затрат на КР локальной вычислительной сети. 70
5.3. Экономическая часть. 71
5.3.1. Затраты на основные и вспомогательные материалы. 71
5.3.2. Затраты на комплектующие изделия. 72
5.3.3. Расчет заработной платы монтажников, занятых монтажом ЛВС. 73
5.3.4. Расчет накладных расходов. 73
5.3.5. Расчет общей сметы затрат на проектирование и монтаж ЛВС. 73
5.4. Расчет экономической эффективности проектируемой ЛВС. 74
5.4.1. Технико-экономические показатели. 75
5.5. Выводы. 75
6. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТНЫХ РЕШЕНИЙ. 76
6.1. Цель и решаемые задачи. 76
6.2. Опасные и вредные факторы при работе с ПЭВМ. 76
6.3. Характеристика объекта исследования. 77
6.4. Мероприятия по безопасности труда и сохранению работоспособности. 77
6.4.1. Обеспечение требований эргономики и технической эстетики. 77
6.4.1.1. Планировка помещения, размещение оборудования 77
6.4.1.2. Эргономические решения по организации рабочего места пользователей ПЭВМ. 78
6.4.1.3. Цветовое оформление помещения. 80
6.4.2. Обеспечение оптимальных параметров воздуха зон. 81
6.4.2.1. Нормирование параметров микроклимата. 81
6.4.2.2. Нормирование уровней вредных химических веществ. 82
6.4.2.3. Нормирование уровней аэроионизации. 83
6.4.2.4. Расчет приточно-вытяжной вентиляции. 83
6.4.3. Создание рационального освещения. 85
6.4.3.1. Расчет искусственной освещенности помещения. 85
6.4.4. Защита от шума. 87
6.4.5. Обеспечение режимов труда и отдыха. 88
6.4.6. Обеспечение электробезопасности. 88
6.4.7. Защита от статического электричества. 89
6.4.8. Обеспечение пожаробезопасности. 90
7. СПИСОК ЛИТЕРАТУРЫ. 92
Ассоциация электронной
До 1991 года законодателями в телекоммуникационных кабельных системах были компании-производители компьютерной техники. Конечные пользователи зачастую оказывались в неприятном положении из-за противоречивших друг другу требований отдельных производителей по рабочим характеристикам систем и были вынуждены платить большие суммы за монтаж, настройку и эксплуатацию частных систем.
Промышленность средств
Дополнительные нормативные
Целью указанных стандартов является описание структурированного каблирования - телекоммуникационной кабельной системы, которая может виртуально поддерживать любые приложения передачи речи, изображения и данных по желанию конечного пользователя.
Рис.2 Схема типовой СКС.
В настоящее время по мере того, как все большее количество пользователей переходят к применению открытых систем, выпускаемое активное оборудование проектируется на основе положения, что кабельная часть информационной инфраструктуры соответствует требованиям стандартов, то есть является гарантированно надежной и способной обеспечивать определенные рабочие характеристики. К различным рискам, являющимися следствием нестандартных кабельных систем, можно отнести следующие - сетевые рабочие характеристики ниже определенных стандартами, повышенная стоимость внесения изменений в систему и неспособность системы поддерживать новые технологии. По мере распространения принципов структурированного каблирования стоимость устанавливаемого сетевого оборудования падала, а эффективность передачи данных росла с экспоненциальной зависимостью. Телекоммуникационная инфраструктура переросла в доступный инструмент бизнеса с широкими возможностями.
Структурированная кабельная система
(СКС) является основополагающей базой
на протяжении всего времени существования
информационной сети. Это основа, от
которой зависит
По данным статистики несовершенные кабельные системы являются причиной до 70% всех простоев информационной сети. Монтируя СКС, созданную в соответствии с положениями стандартов, можно эффективно устранять значительную долю времени простоев.
Несмотря на то, что кабельная система, как правило, существует дольше большинства других сетевых компонентов, ее стоимость составляет небольшую часть общих инвестиций в информационную сеть. Таким образом, использование структурированной кабельной систем является весьма убедительным способом инвестирования в производительность любой организации или компании.
Кабельная система является компонентом сети с самым продолжительным временем жизни, дольше которого существует только каркас здания. Кабельная система, созданная на основе стандартов, гарантирует долговременное функционирование сети и поддержку многочисленных приложений, обеспечивая отдачу от инвестиций на всем протяжении ее существования.
Витая пара (twisted pair) - это кабель на медной основе, объединяющий в оболочке одну или более пар проводников. Каждая пара представляет собой два перевитых вокруг друг друга изолированных медных провода. Кабели данного типа зачастую сильно отличаются по качеству и возможностям передачи информации. Соответствия характеристик кабелей определенному классу или категории определяют общепризнанные стандарты (ISO 11801 и TIA-568). Сами характеристики напрямую зависят от структуры кабеля и применяемых в нем материалов, которые и определяют физические процессы, проходящие в кабеле при
передачи сигнала.
Кабель типа "витая пара" (TP, Twisted Pair) бывает двух видов: экранированная витая пара (STP, Shielded Twisted Pair) и неэкранированная витая пара (UTP, Unshielded Twisted Pair). Также подразделяется на одножильную и многожильную витую пару, а также витую пару для внешней прокладки.
Рис.3 Кабель витая пара
Неэкранированная витая пара (Unshielded Twisted Pair): разделяется на категории 1,2,3,4,5,5e,6;7. Самые распространённые в настоящее время категории - 5 и 5е, со скоростью передачи данных 10,100 и 1000 Мб/с. Кабели выпускаются в 4-парном исполнении. Все пары имеют определённый цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две – для передачи голоса. Для соединения кабеля с оборудованием используются вилки и розетки RJ-45. Диаметр кабеля: 22 AWG, 24 AWG, 26 AWG. Чем больше номер, тем меньше его диаметр.
Экранированная витая пара (Shielded Twisted Pair): разделяется на категории 5,5e,6,7. Основное назначение этих кабелей – поддержка высокоскоростных протоколов. Экранированная витая пара хорошо защищает передаваемые сигналы от внешних помех и используется только для передачи данных.
Преимущества и недостатки витой пары:
плюсы: Простота установки, отказоустойчивость, высокая производительность.
минусы: Ограниченная длина, слабая помехоустойчивость от наводок (силовые трансформаторы, передающие устройства, лампы дневного света).
Таблица 1. Параметры физического уровня для сетей Ethernet и Fast Ethernet
10Base-2 |
10Base-T |
100Base-TX | |
Кабель |
Тонкий коаксиальный коаксиальный кабель RG-58 |
Неэкранированная витая пара категории 3 и 5 |
Неэкранированная витая пара категории 5e |
Максимальная длина сегмента, м |
185 |
100 |
100 |
Максимальное расстояние между узлами сети (при использовании повторителей), м |
925 |
500 |
200 |
Максимальное число станций в сегменте |
30 |
1024 |
1024 |
Характеристический импеданс соответствует входному импедансу однородной линии передачи бесконечной длины то есть линии передачи предельной длины, терминированной нагрузкой со значением ее собственного характеристического импеданса. В общем случае, характеристический импеданс - это комплексное число с резистивной и реактивной компонентами. Он является функцией частоты передаваемого сигнала и не зависит от длины линии. При очень высоких частотах характеристический импеданс асимптотически стремится к фиксированному резистивному сопротивлению. Например, коаксиальные кабели обладают импедансом 50 или 75 0м на высоких частотах. Типичное значение импеданса для кабелей "витая пара" - 100 0м при частотах свыше 1 МГц.
Затухание сигнала - это отношение в децибелах (дБ) мощности входного сигнала к мощности сигнала на выходе при соответствии импедансов источника и нагрузки характеристическому импедансу кабеля. Значение входной мощности может быть получено путем измерения мощности при непосредственном подключении нагрузки к источнику без прохождения сигнала по кабелю. В случаях, когда в местах терминирования импедансы не идеально соответствуют друг другу, отношение входной мощности к выходной носит название вносимых потерь или вносимого затухания.
Переходное затухание на ближнем конце (Near End Crosstalk, NEXT) - параметр, характеризующий затухание сигнала помехи, наведенного сигналом, проходящим по одной паре проводников, на другую, расположенную поблизости. Измеряется в дБ. Чем выше значение NEXT, тем лучше изоляция помехам между двумя парами проводников.
Обратные потери (потери при отражении). Когда импеданс кабеля и нагрузки не совпадает, сигнал, распространяющийся по кабелю, частично будет отражаться в точке интерфейса кабель-нагрузка.
Мощность отраженного сигнала носит название потерь при отражении или обратных потерь. Чем лучше совместимость импедансов, тем меньше отражаемая мощность и тем ниже обратные потери.
Временная задержка распространения сигнала. Сигнал, распространяющийся от входной точки к выходной, приходит с временной задержкой, величина которой является отношением длины кабеля к скорости распространения сигнала V в передающей среде. В случае идеальной линии передачи, состоящей из двух проводников в вакууме, скорость распространения сигнала равна скорости распространения света в вакууме с. На практике скорость распространения сигнала в кабеле зависит от свойств диэлектрических материалов, окружающих проводники.
Отношение сигнал-шум (SNR) - это соотношение между уровнем принимаемого сигнала и уровнем принимаемого шума, причем уровень сигнала должен значительно превосходить уровень шума для обеспечения приемлемых условий передачи.
Отношение затухания к переходному затуханию (ACR). Соотношение между сигналом и шумом может быть выражено в форме отношения затухания к переходному затуханию (ACR). ACR - это разница между ослабленным сигналом на выходе и вредным наведенным сигналом ("шумом") NEXT.
Волоконно-оптический кабель – кабель, содержащий одно или несколько оптических волокон для передачи данных в виде света. В зависимости от конструктивного исполнения волоконно-оптические кабели делятся на кабели внутренней и внешней прокладки, а также кабели для шнуров.
Волоконно-оптические коммуникации имеют ряд преимуществ по сравнению с электронными системами, использующими передающие среды на металлической основе. В волоконно-оптических системах передаваемые сигналы не искажаются ни одной из форм внешних электронных, магнитных или радиочастотных помех. Таким образом, оптические кабели полностью невосприимчивы к помехам, вызываемым молниями или источниками высокого напряжения.
Цифровые вычислительные системы, телефония и видеовещательные системы требуют новых направлений для улучшения передающих характеристик. Большая ширина спектра оптического кабеля означает повышение емкости канала. Кроме того, более длинные отрезки кабеля требуют меньшего количества репитеров, так как волоконно-оптические кабели обладают чрезвычайно низкими уровнями затухания. Это свойство идеально подходит для широковещательных и телекоммуникационных систем.
По сравнению с обычными коаксиальными кабелями с равной пропускной способностью, меньший диаметр и вес волоконно-оптических кабелей означает сравнительно более легкий монтаж, особенно в заполненных трассах. 300 метров одноволоконного кабеля весят около 2,5 кг. 300 метров аналогичного коаксиального кабеля весят 32 кг - приблизительно в 13 раз больше.
Основные элементы оптического волокна
Ядро. Ядро - светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.
Демпфер. Назначение демпфера - обеспечение более низкого коэффициента преломления на границе с ядром для переотражения света в ядро таким образом, чтобы световые волны распространялись по волокну.
Оболочка. Оболочки обычно бывают многослойными, изготавливаются из пластика для обеспечения прочности волокна, поглощения ударов и обеспечения дополнительной защиты волокна от воздействия окружающей среды. Такие буферные оболочки имеют толщину от 250 до 900 мкм.
Рис.4 Оптический кабель
Размер волокна в общем случае определяется по внешним диаметрам его ядра, демпфера и оболочки. Например, 50/125/250 - характеристика волокна с диаметром ядра 50 мкм, диаметром демпфера 125 мкм и диаметром оболочки 250 мкм. Оболочка всегда удаляется при соединении или терминировании волокон.
Тип волокна идентифицируется по типу путей, или так называемых "мод", проходимых светом в ядре волокна. Существует два основных типа волокна - многомодовое и одномодовое. Ядра многомодовых волокон могут обладать ступенчатым или градиентным показателями преломления. Многомодовое волокно со ступенчатым показателем преломления получило свое название от резкой, ступенчатой, разницы между показателями преломления ядра и демпфера. В более распространенном многомодовом волокне с градиентным показателем преломления лучи света также распространяются в волокне по многочисленным путям. В отличие от волокна со ступенчатым показателем преломления, ядро с градиентным показателем содержит многочисленные слои стекла, каждый из которых обладает более низким показателем преломления по сравнению с предыдущим слоем по мере удаления от оси волокна. Результатом формирования такого градиента показателя преломления является то, что лучи света ускоряются во внешних слоях и их время распространения в волокне сравнивается с временем распространения лучей, проходящих по более коротким путям ближе к оси волокна.
Таким образом, волокно с градиентным
показателем преломления
Информация о работе Локальная вычислительная сеть ЗАО «Аплана Софтвер»