Теоретическая информатика. Решение систем линейных уравнений методом Крамара

Автор работы: Пользователь скрыл имя, 15 Июня 2014 в 23:58, курсовая работа

Краткое описание

Практически в каждой науке есть фундамент, без которого ее прикладные аспекты лишены основ. Для математики такой фундамент составляют теория множеств, теория чисел, математическая логика и некоторые другие разделы; для физики — это основные законы классической и квантовой механики, статистической физики, релятивистской теории; для химии — периодический закон, его теоретические основы и т.д. Можно, конечно, научиться считать и пользоваться калькулятором, даже не подозревая о существовании указанных выше разделов математики, делать химические анализы без понимания существа химических законов, но при этом не следует думать, что ты знаешь математику или химию. Примерно то же с информатикой: можно изучить несколько программ и даже освоить некоторое ремесло, но это отнюдь не вся информатика, точнее, даже не самая главная и интересная ее часть.

Содержание

Глава 1. Теоретическая информатика.
Введение
Информатика как наука и вид практической деятельности
Социальные, правовые и этические аспекты информатики.
Информация, ее виды и свойства
Единицы количества информации: вероятностный и объемный подходы.
Информационная картина мира.
Глава 2. Решение систем линейных уравнений методом Крамара.
Введение
Метод Крамера
Delphi
Глава 3. Практическая часть.

Вложенные файлы: 1 файл

Курсовая работа.docx

— 112.26 Кб (Скачать файл)

Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на “долю” каждого исхода приходится одна N-является часть общей неопределенности опыта:

     ( log2 N ) / N

При этом вероятность i-го исхода Pi равняется, очевидно, 1/N.

Таким образом,

                                    (1.6)

Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опыта  неравновероятны (т.е. Pi могут быть различны). Формула (1.6) называется  формулой  Шеннона.

В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака “пробел” для разделения слов. По формуле (1.5)   

H = log2 34 ~ 5 бит

 Однако, в словах русского  языка (равно как и в словах  других языков) различные буквы  встречаются неодинаково часто. Ниже приведена табл. 3 вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.

Воспользуемся для подсчета H формулой (1.6): H ~ 4.72 бит. Полученное значение H, как и можно было предположить, меньше вычисленного ранее. Величина H, вычисляемая по формуле (1.5), является максимальным количеством информации, которое могло бы приходиться на один знак.

Аналогичные подсчеты H можно провести и для других языков, например, использующих латинский алфавит — английского, немецкого, французского и др. (26 различных букв и “пробел”). По формуле (1.5) получим

H = log2 27 ~ 4.76 бит

Как и в случае русского языка, частота появления тех или иных знаков не одинакова. Так, если расположить все буквы данных языков в порядке убывания вероятностей, то получим следующие последовательности:

АНГЛИЙСКИЙ ЯЗЫК:   “пробел”, E, T, A, O, N, R,  …

НЕМЕЦКИЙ ЯЗЫК:   “пробел”, E, N,  I, S, T, R,  …

ФРАНЦУЗСКИЙ ЯЗЫК:   “пробел”, E, S, A, N,  I, T,  …

Таблица 3.

 

 

Частотность букв русского языка

i

Символ

P(i)

i

Символ

P(i)

i

Символ

P(i)

1

_

0.175

12

Л

0.035

23

Б

0.014

2

О

0.090

13

К

0.028

24

Г

0.012

3

Е

0.072

14

М

0.026

25

Ч

0.012

4

Ё

0.072

15

Д

0.025

26

Й

0.010

5

А

0.062

16

П

0.023

27

Х

0.009

6

И

0.062

17

У

0.021

28

Ж

0.007

7

T

0.053

18

Я

0.018

29

Ю

0.006

8

H

0.053

19

Ы

0.016

30

Ш

0.006

9

C

0.045

20

З

0.016

31

Ц

0.004

10

P

0.040

21

Ь

0.014

32

Щ

0.003

11

B

0.038

22

Ъ

0.014

33

Э

0.003

           

34

Ф

0.002


 

Рассмотрим алфавит, состоящий из двух знаков 0 и 1. Если считать, что со знаками 0 и 1 в двоичном алфавите связаны одинаковые вероятности их появления (P(0)=P(1)= 0.5), то количество информации на один знак при двоичном кодировании будет равно

                H = log2 2 = 1 бит.

Таким образом, количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.

  Объемный подход

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs — двоичные цифры). Отметим,  что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий два различных состояния:  намагниченность в двух противоположных направлениях, прибор, пропускающий или нет электрический ток, конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками  в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков  содержит один  байт  информации. 1024 байта образуют  килобайт  (Кбайт), 1024 килобайта  —  мегабайт (Мбайт), а 1024 мегабайта — гигабайт  (Гбайт).

 Между вероятностным и объемным  количеством информации соотношение  неоднозначное. Далеко не всякий  текст, записанный двоичными символами, допускает измерение объема информации  в кибернетическом смысле, но  заведомо допускает его в объемном. Далее, если некоторое сообщение  допускают измеримость количества  информации в обоих смыслах, то  это количество не обязательно  совпадает, при этом кибернетическое  количество информации не может  быть больше объемного.

В дальнейшем тексте данного учебника практически всегда количество информации понимается в объемном смысле.

 

6. Информационная картина мира.

6.1. Информация: более широкий взгляд

Как ни важно измерение информации, нельзя сводить к нему все связанные с этим понятием проблемы. При анализе информации социального (в широким смысле) происхождения на первый план могут выступить такие ее свойства как истинность, своевременность, ценность, полнота и т.д. Их невозможно оценить в терминах “уменьшение неопределенности” (вероятностный подход) или числа символов (объемный подход). Обращение к качественной стороне информации породило иные подходы к ее оценке. При аксиологическом подходе стремятся исходить из ценности, практической значимости информации, т.е. качественных характеристик, значимых в социальной системе. При семантическом подходе информация рассматривается как с точки зрения формы, так и содержания. При этом информацию связывают с тезаурусом, т.е. полнотой систематизированного набора данных о предмете информации. Отметим, что эти подходы не исключают количественного анализа, но он становится существенно сложнее и должен базироваться на современных методах математической статистики.

Понятие информации нельзя считать лишь техническим, междисциплинарным и даже наддисциплинарным термином. Информация — это фундаментальная философская категория. Дискуссии ученых о философских аспектах информации надежно показали не сводимость информации ни к одной из этих категорий. Концепции и толкования, возникающие на пути догматических подходов, оказываются слишком частными, односторонними, не охватывающими всего объема этого понятия.

Попытки рассмотреть категорию информации с позиций основного вопроса философии привели к возникновению двух противостоящих концепций — так называемых, функциональной и атрибутивной. “Атрибутисты” квалифицируют информацию как свойство всех материальных объектов, т.е. как атрибут материи. “Функционалисты” связывают информацию лишь с функционированием сложных, самоорганизующихся систем. Оба подхода, скорее всего, неполны.  Дело в том, что природа сознания, духа по сути своей является информационной, т.е. сознание суть менее общее понятие по отношению к категории “информация”. Нельзя признать корректными попытки сведения более общего понятия к менее общему. Таким образом, информация и информационные процессы, если иметь в виду решение основного вопроса философии, опосредуют материальное и духовное, т.е. вместо классической постановки этого вопроса получается два новых: о соотношении материи и информации и о соотношении информации и сознания (духа).

Можно попытаться дать философское определение информации с помощью указания на связь определяемого понятия с категориями отражения и активности. Информация есть содержание образа, формируемого в процессе отражения. Активность входит в это определение в виде представления о формировании некоего образа в процессе отражения некоторого субъект-объектного отношения. При этом не требуется указания на связь информации с материей, поскольку как субъект, так и объект процесса отражения могут принадлежать как к материальной, так и к духовной сфере социальной жизни. Однако существенно подчеркнуть, что материалистическое решение основного вопроса философии требует признания необходимости существования материальной среды — носителя информации в процессе такого отражения. Итак, информацию следует трактовать как имманентный (неотъемлемо присущий) атрибут материи, необходимый момент ее самодвижения и саморазвития. Эта категория приобретает особое значение применительно к высшим формам движения материи — биологической и социальной.

Данное выше определение схватывает важнейшие характеристики информации. Оно не противоречит тем знаниям, которые накоплены по этой проблематике, а наоборот, является выражением наиболее значимых

Современная практика психологии, социологии, информатики диктует необходимость перехода к информационной трактовке сознания. Такая трактовка оказывается чрезвычайно плодотворной, и позволяет, например, рассмотреть с общих позиций индивидуальное и общественное сознание. Генетически индивидуальное и общественное сознание неразрывны и в то же время общественное сознание не есть простая сумма индивидуальных, поскольку оно включает информационные потоки и процессы между индивидуальными сознаниями.

В социальном плане человеческая деятельность предстает как взаимодействие реальных человеческих коммуникаций с предметами материального мира. Поступившая извне к человеку информация является отпечатком, снимком сущностных сил природы или другого человека. Таким образом, с единых методологических позиций может быть рассмотрена деятельность индивидуального и общественного сознания, экономическая, политическая, образовательная деятельность различных субъектов социальной системы.

Данное выше определение информации как философской категории затрагивает не только физические аспекты существования информации, но и фиксирует ее социальную значимость.

Одной из важнейших черт функционирования современного общества выступает его информационная оснащенность. В ходе своего развития  человеческое общество прошло через  пять информационных революций. Первая из них была связана с введением языка, вторая — письменности, третья — книгопечатания, четвертая —  телесвязи, и, наконец, пятая — компьютеров (а также магнитных и оптических носителей хранения информации). Каждый раз новые информационные технологии поднимали информированность общества на несколько порядков, радикально меняя объем и глубину знания, а вместе с этим и уровень культуры в целом.

Одна из целей философского анализа понятия информации — указать место информационных технологий в развитии форм движения материи, в прогрессе человечества и, в том числе, в развитии разума как высшей отражательной способности материи. На протяжении десятков тысяч лет сфера разума развивалась исключительно через общественную форму сознания. С появлением компьютеров начались разработки систем искусственного интеллекта, идущих по пути моделирования общих интеллектуальных функций индивидуального сознания.

6.2. Информация и физический мир

Известно большое количество работ, посвященных физической трактовке информации. Эти работы в значительной мере построены на основе аналогии формулы Больцмана, описывающей энтропию статистической системы материальных частиц, и формулы Хартли.

Заметим, что при всех выводах формулы Больцмана явно или неявно предполагается, что макроскопическое состояние системы, к которому относится функция энтропии, реализуется на микроскопическом уровне как сочетание механических состояний очень большого числа частиц, образующих систему (молекул). Задачи же кодирования и передачи информации, для решения которых Хартли и Шенноном была развита вероятностная мера информации, имели в виду очень узкое техническое понимание информации, почти не имеющее отношения к полному объему этого понятия. Таким образом, большинство рассуждений, использующих термодинамические свойства энтропии применительно к информации нашей реальности, носят спекулятивный характер. В частности, являются необоснованными использование понятия “энтропия” для систем с конечным и небольшим числом состояний, а также попытки расширительного методологического толкования результатов теории вне довольно примитивных механических моделей, для которых они были получены. Энтропия и негэнтропия — интегральные характеристики протекания стохастических процессов — лишь параллельны информации и превращаются в нее в частном случае.

Информацию следует считать особым видом ресурса, при этом имеется ввиду толкование “ресурса” как запаса неких знаний материальных предметов или энергетических, структурных или каких-либо других характеристик предмета. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают существенно иные методы воспроизведения и обновления, чем материальные ресурсы.

Рассмотрим некоторый набор свойств информации:

• запоминаемость;

• передаваемость;

• преобразуемость;

• воспроизводимость;

• стираемость.

Свойство запоминаемости — одно из самых важных. Запоминаемую  информацию будем называть макроскопической (имея ввиду пространственные масштабы запоминающей ячейки и время запоминания). Именно с макроскопической информацией мы имеем дело в реальной практике.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследована в рамках теории информации К.Шеннона. В данном случае имеется ввиду несколько иной аспект — способность информации к копированию, т.е. к тому, что она может быть “запомнена” другой макроскопической системой и при этом останется тождественной самой себе. Очевидно, что   количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при копировании информация остается тождественной самой себе.

Фундаментальное свойство информации — преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может. Свойство стираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Данных свойств информации недостаточно для формирования ее меры, так как они относятся к физическому уровню информационных процессов.

Подводя итог сказанному в п. 2.4 — 2.5, отметим, что предпринимаются (но отнюдь не завершены) усилия ученых, представляющих самые разные области знания, построить единую теорию, которая призвана формализовать понятие информации и информационного процесса, описать превращения информации в процессах самой разной природы. Движение информации есть сущность процессов управления, которые суть проявление имманентной активности материи, ее способности к самодвижению. С момента возникновения кибернетики управление рассматривается применительно ко всем формам движения материи, а не только к высшим (биологической и социальной). Многие проявления движения в неживых — искусственных (технических) и естественных (природных) — системах также обладают общими признаками управления, хотя их исследуют в химии, физике, механике в энергетической, а не в информационной системе представлений. Информационные аспекты в таких системах составляют предмет новой междисциплинарной науки — синергетики.

Информация о работе Теоретическая информатика. Решение систем линейных уравнений методом Крамара