Научные революции в естествознании, их основные виды и черты

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 19:33, контрольная работа

Краткое описание

Развитие естествознания не является монотонным процессом количественного накопления знаний об окружающем мире. В развитии науки время от времени возникают переломные этапы, кризисы, выход на качественно новый уровень знаний, который радикально изменяет прежнее видение мира или картину мира. Такие переломные в истории науки этапы называют научными революциями. Научная революция есть процесс коренного, качественного переворота знаний и представлений о мире, вызванный научными достижениями и открытиями; это коренная ломка представлений о строении мира и положения в нем человека, великий поворот в мышлении, перелом в развитии науки. При этом старое, занимавшее до тех пор господствующее положение, заменяется на новое, а не переделывается постепенно шаг за шагом.

Вложенные файлы: 1 файл

1.doc

— 228.00 Кб (Скачать файл)

Оглавление

 

 

 

  1. Научные революции в естествознании, их основные  
    виды и черты

То, что мы знаем, - ограниченно, а то, чего не знаем, -бесконечно.

П. Лаплас

Развитие естествознания не является монотонным процессом количественного  накопления знаний об окружающем мире. В развитии науки время от времени возникают переломные этапы, кризисы, выход на качественно новый уровень знаний, который радикально изменяет прежнее видение мира или картину мира. Такие переломные в истории науки этапы называют научными революциями. Научная революция есть процесс коренного, качественного переворота знаний и представлений о мире, вызванный научными достижениями и открытиями; это коренная ломка представлений о строении мира и положения в нем человека, великий поворот в мышлении, перелом в развитии науки. При этом старое, занимавшее до тех пор господствующее положение, заменяется на новое, а не переделывается постепенно шаг за шагом. Революционные преобразования в естествознании означают коренные, качественные изменения в концептуальном содержании его теорий, учений и научных дисциплин.

Революции совершаются людьми как  их сознательная, целенаправленная деятельность. В природе также происходят коренные и качественные изменения, но здесь они носят стихийный характер. В любой научной революции можно хронологически выделить более или менее длительный исторический период, в течение которого она происходит. Революция, неся разрушение старому в самом его фундаменте, приводит и к позитивному - создает на месте разрушенного старого новое. Это естественный, закономерный процесс. Периоды спокойного развития сменяются взрывной волной научного творчества. В этот период появляются богато одаренные личности, которые поднимают определенные области знаний на небывалую высоту. Эти периоды, как писал известный французский физик Луи де Бройль, характеризуют решающие этапы в прогрессивном развитии наших знаний.

Научные революции приводят к изменению основ научного знания, которые складываются из целого ряда устойчиво связанных систем, учений и понятий, называемых парадигмами. Переход от одной парадигмы к другой совершается путем научной революции, которая ломает устаревшую парадигму и открывает дорогу к выработке и установлению новой. Характер и содержание самих научных революций изменяются по мере того, как происходит общее развитие всего научного знания. Оно проходит последовательно различные ступени, переходит от более низких на более высокие, продвигаясь вперед к более полному раскрытию познаваемой истины. Каждый такой переход с одной ступени познания на другую происходит в виде революционного переворота в науке.

Всякое познание начинается с эмпирической стадии, т.е. с ощущений, улавливаемых непосредственно нашими органами чувств. Ее содержанием служит живое созерцание наблюдаемых нами явлений. Далее от изучения непосредственных явлений мы переходим к раскрытию их сущности, которая обнаруживается посредством работы нашего абстрактного мышления. Особенности научных революций обусловлены тем, что сама сущность вещей и явлений носит многоступенчатый характер. Переход от одной ее ступени к последующей при движении вглубь познаваемой сущности влечет за собой каждый раз коренную ломку прежних научных представлений. Сначала люди познавали видимый для них окружающий мир - мир макровещей и макроявлений (макромир). Когда этот мир был достаточно познан, люди перешагнули "границу", отделявшую макромир от скрытого внутри него микромира. С тех пор они двигаются все дальше и дальше вглубь микроявлений.

Существуют различные классификации  научных революций как по времени  их происхождения, так и по решаемым ими задачам. Здесь мы рассмотрим классификацию, предложенную известным философом естествознания Б. Кедровым. Он выделяет три типа научных революций.

1) Научные революции I типа (середина XIV в. - конец XVIII в.). Они привели к разрушению наивных представлений о макромире. На ранней стадии своего развития человечество еще не выработало правильного представления об окружающем мире. Оно мыслило наивно и примитивно: то, что я вижу и осязаю, и есть сама действительность. Такой я ее воспринимаю своими органами чувств. В результате в течение длительного времени у людей складывалась уверенность в том, что видимое или кажущееся нам и есть сама действительность. Такое убеждение превратилось в барьер на пути к познанию истины, которая, как правило, скрывается от непосредственного взора людей за обманчивой видимостью.

Разрушение данного барьера  составляло задачу революций I типа. Каждый раз, когда такие революции совершались, прежние наивные и ошибочные представления как бы "переворачивались". Эти революции доказывали необходимость для науки критического разума. Так происходило в астрономии (XVI в. - открытие Н. Коперника того, что планеты движутся вокруг Солнца), в механике (XVII в. - открытия Г. Галилея и И. Ньютона), в химии (XVIII в. - учение А. Лавуазье, установившего сущность процесса горения), а позднее - в биологии, общественных науках и философии.

Открытие Коперником гелиоцентрической  системы мира, которая пришла на смену Птолемеевской геоцентрической системе, считается первой глобальной научной революцией в истории человечества. Она привела к принципиально новому миропониманию, которое исходило из того, что Земля одна из планет, движущихся вокруг Солнца по круговым орбитам. Коперник впервые высказал очень важную мысль о движении как естественном свойстве небесных и земных объектов, подчиненном некоторым закономерностям единой механики. Учение Коперника подрывало опиравшуюся на идеи Аристотеля религиозную картину мира, исходившую из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания.

2) Научные революции II типа (вторая половина XVIII в. -XIX в.) привели к проникновению идеи развития в науку о макромире. Революции I типа, разрушая веру в видимость, все же не доводили начатое до конца. Оставалось нетронутым убеждение, что процессы в мире неизменны испокон веков, что они повторяются в одном и том же вечном круге. Объявлялись неизменными, раз и навсегда данными вновь открываемые законы природы, а также сущность наблюдаемых явлений. Такой взгляд означал не только признание абсолютной неизменности природы, но и ее дробление на различные не связанные между собой области, между которыми проводились резкие границы.

Научные революции II типа разрушали веру в абсолютную неизменность природы, в ее разделение на изолированные друг от друга участки. Они совершались в какой­либо области, как правило, после революции I типа, являясь ее прямым развитием. Иногда они происходили одновременно, но бывало, что революция II типа опережала революцию I типа.

Самые первые научные революции  II типа произошли в астрономии (XVIII в. - космологическая гипотеза Канта­Лапласа о происхождении солнечной системы, которая известна как небулярная теория (небула - туман): из хаоса возникают туманности, склонные к развитию, которое приводит к тому, что в центре туманности возникает звезда); в химии (химическая атомистика, XIX в.). Из других революций этого типа отметим эволюционную теорию Ламарка в биологии (XVIII в.), диалектическую философию Гегеля (XIX в.) и др.

3) Научные революции III типа (ХХ в.) привели к проникновению науки в область микромира. В отличие от предыдущих революций, которые совершались в области познания явлений макромира, в ходе новейшей революции в естествознании диалектика шаг за шагом врывалась в область познания микромира, вскрывая его своеобразие и качественное отличие. В целом эти революции были направлены на то, чтобы разрушить барьер, стоящий на пути познания микроявлений, сущностью которого была вера в качественную тождественность макро- и микромира. Новейшая революция в естествознании происходила как бы дифференцированным образом: она разрушала основной барьер, стоявший между макро-и микромиром, не сразу одним ударом, а как бы по частям. Она совершалась поэтапно, переходя с одной ступени познания материи на другую, вглубь материи. Со временем она охватила практически все области естествознания, в том числе биологию, где особенно важные перевороты произошли в области генетики.

Революции III типа привели к крушению понятия неделимого, неизменного атома, ввели идею дискретности в физику, уничтожили перегородки между различными сторонами объектов природы; привели к динамической модели атома, к созданию квантовой механики и теории элементарных частиц. В итоге все эти открытия позволили "нарисовать" современную естественно­научную картину мира.

Революции III типа привели к кардинальному изменению представлений о материи, о пространстве и времени, причине и следствии и т.д., лежащих в основе нашего мировоззрения, и тем самым привели к пересмотру всей картины мира. Подчеркнем, что научные революции не отменяют старые знания, они их преобразуют, наполняют новым содержанием, дают им новую интерпретацию.

  1. Панорама современного естествознания
    1. Введение

В XX веке естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

Мощным стимулом для развития науки  и техники стали мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начали выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Существенно расширилась сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.

Если в конце XIX века научные открытия совершались в маленькой лаборатории профессора или в мастерской изобретателя, то в 20-ЗО-е годы XX века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих сотни тысяч и миллионы долларов. С конца XIX века наука начинает себя окупать. Капитал, вложенный в научные разработки, начинает приносить прибыль.

В XX веке наука перестала быть частным делом, каковой она была в XVIII-XIX веках, когда ее развивали любознательные самоучки: адвокаты, священники, медики, ремесленники и т. д. Наука становится профессией огромного числа людей. Современные исследования показывают, что развитие науки может быть выражено экспоненциальным законом. Объем научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и объема научной информации, а также числа людей, занятых в науке. В результате — феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.

В XX веке наука изменила не только сферу производства, но и быт людей. Радио, телевидение, магнитофоны, компьютеры становятся обиходными вещами, также как одежда из синтетических тканей, стиральные порошки, лекарства и т.д.

Все это характеризует как бы внешнюю сторону развития науки нашего времени. Теперь рассмотрим, какие важнейшие научные открытия были сделаны за последние 70-80 лет.

    1.  Физика микромира и мегамира. Атомная физика

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX века ученые считали, что:

  1. химические атомы каждого элемента неизменны, и существуют столько сортов атомов, сколько известно химических элементов (в то время - примерно 70);
  2. атомы данного элемента одинаковы;
  3. атомы имеют вес, причем различие атомов основано на различии их веса;
  4. взаимный переход атомов данного элемента в атомы другого элемента невозможен.

В конце XIX — начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи. Открытие электрона (1897г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становится важнейшей задачей физики XX века.

После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц. В том числе: позитрон, (античастица электрона); мезоны — нестабильные микрочастицы; различного рода гипероны — нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10-22-10-24 с); нейтрино — стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино — античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

В характеристике элементарных частиц существует еще  одно важное представление — взаимодействие.

Различают четыре вида взаимодействия.

Сильное взаимодействие (короткодействующее, радиус действия около 10-13 см) связывает между собой нуклоны (протоны и нейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное  взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаимодействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.

Слабое  взаимодействие (короткодействующее, радиус действия меньше 10-15 см), в котором участвуют все элементарные частицы, обусловливает взаимодействие нейтрино с веществом.

Гравитационное  взаимодействие — самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.

Элементарные  частицы в настоящее время  обычно разделяют на следующие классы:

  1. Фотоны — кванты электромагнитного поля, частицы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.
  2. Лептоны (от греч. leptos — легкий), к числу которых относятся электроны, нейтрино; все они не обладают сильным взаимодействием, но участвуют в слабом взаимодействии, а имеющие электрический заряд — также и в электромагнитном взаимодействии.
  3. Мезоны — сильно взаимодействующие нестабильные частицы.
  4. Барионы (от греч. barys — тяжелый), в состав которых входят нуклоны (нестабильные частицы с массами, большими массы нейтрона), гипероны, многие из резонансов.

Информация о работе Научные революции в естествознании, их основные виды и черты